Isospin-violating dark matter with colored mediators

  • Koichi Hamaguchi
  • Seng Pei Liew
  • Takeo Moroi
  • Yasuhiro Yamamoto
Open Access


In light of positive signals reported by the CDMS-II Si experiment and the recent results of the LUX and SuperCDMS experiments, we study isospin-violating dark matter scenarios assuming that the interaction of the dark matter is mediated by colored particles. We investigate the phenomenology of the model, including collider searches, flavor and CP phenomenology. A minimal possible scenario includes scalar dark matter and new vector-like colored fermions with masses of O(1) TeV as mediators. Such a scenario may be probed at the 14 TeV LHC, while flavor and CP constraints are stringent and severe tuning in the couplings is unavoidable. We also found that, as an explanation of the CDMS-II Si signal, isospin-violating fermionic dark matter models with colored scalar mediators are disfavored by the LHC constraints.


Phenomenological Models Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  2. [2]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    DAMA and LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].Google Scholar
  4. [4]
    CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    C.E. Aalseth et al., Search for an annual modulation in a P-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CoGeNT collaboration, C.E. Aalseth et al., Search for an annual modulation in three years of CoGeNT dark matter detector data, arXiv:1401.3295 [INSPIRE].
  7. [7]
    G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
  10. [10]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Felizardo et al., Final analysis and results of the phase II SIMPLE dark matter search, Phys. Rev. Lett. 108 (2012) 201302 [arXiv:1106.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    CDMS collaboration, D.S. Akerib et al., A low-threshold analysis of CDMS shallow-site data, Phys. Rev. D 82 (2010) 122004 [arXiv:1010.4290] [INSPIRE].Google Scholar
  14. [14]
    CDMS-II collaboration, Z. Ahmed et al., Results from a low-energy analysis of the CDMS II germanium data, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    SuperCDMSSoudan collaboration, R. Agnese et al., CDMSlite: a search for low-mass WIMPs using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    SuperCDMS collaboration, R. Agnese et al., Search for low-mass WIMPs with SuperCDMS, arXiv:1402.7137 [INSPIRE].
  17. [17]
    M.I. Gresham and K.M. Zurek, Light dark matter anomalies after LUX, Phys. Rev. D 89 (2014) 016017 [arXiv:1311.2082] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E. Del Nobile, G.B. Gelmini, P. Gondolo and J.-H. Huh, Update on light WIMP limits: LUX, lite and light, JCAP 03 (2014) 014 [arXiv:1311.4247] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  19. [19]
    P.J. Fox, G. Jung, P. Sorensen and N. Weiner, Dark matter in light of LUX, arXiv:1401.0216 [INSPIRE].
  20. [20]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Giuliani, Are direct search experiments sensitive to all spin-independent WIMP candidates?, Phys. Rev. Lett. 95 (2005) 101301 [hep-ph/0504157] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Chang, J. Liu, A. Pierce, N. Weiner and I. Yavin, CoGeNT interpretations, JCAP 08 (2010) 018 [arXiv:1004.0697] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, Light dark matter from the U(1)X sector in the NMSSM with gauge mediation, JCAP 01 (2011) 028 [arXiv:1008.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.L. Feng, J. Kumar, D. Marfatia and D. Sanford, Isospin-violating dark matter, Phys. Lett. B 703 (2011) 124 [arXiv:1102.4331] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, JCAP 07 (2013) 023 [arXiv:1304.6066] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.L. Feng, J. Kumar and D. Sanford, Xenophobic dark matter, Phys. Rev. D 88 (2013) 015021 [arXiv:1306.2315] [INSPIRE].ADSGoogle Scholar
  27. [27]
    V. Cirigliano, M.L. Graesser, G. Ovanesyan and I.M. Shoemaker, Shining LUX on isospin-violating dark matter beyond leading order, arXiv:1311.5886 [INSPIRE].
  28. [28]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, arXiv:1308.0592 [INSPIRE].
  30. [30]
    Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [arXiv:1308.2679] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Papucci, A. Vichi and K.M. Zurek, Monojet versus rest of the world I: t-channel models, arXiv:1402.2285 [INSPIRE].
  33. [33]
    M.R. Buckley and W.H. Lippincott, A spin-dependent interpretation for possible signals of light dark matter, Phys. Rev. D 88 (2013) 056003 [arXiv:1306.2349] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].Google Scholar
  36. [36]
    A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: a model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Goodman et al., Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Goodman et al., Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  42. [42]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Bai and T.M.P. Tait, Searches with mono-leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSGoogle Scholar
  45. [45]
    CMS collaboration, Search for new physics in monojet events in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-048, CERN, Geneva Switzerland (2012).
  46. [46]
    CMS collaboration, Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    CMS collaboration, Search for dark matter in the mono-lepton channel with pp collision events at center-of-mass energy of 8 TeV, CMS-PAS-EXO-13-004, CERN, Geneva Switzerland (2013).
  48. [48]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].ADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 10 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147, CERN, Geneva Switzerland (2012).
  50. [50]
    ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    J. Kumar, D. Sanford and L.E. Strigari, New constraints on isospin-violating dark matter, Phys. Rev. D 85 (2012) 081301 [arXiv:1112.4849] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing nonstandard Standard Model backgrounds with LHC monojets, Phys. Lett. B 714 (2012) 267 [arXiv:1111.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  55. [55]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of milky way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303 [arXiv:1108.2914] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 milky way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].ADSGoogle Scholar
  60. [60]
    X.-G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at the LHC and darkon models, Phys. Rev. D 88 (2013) 013020 [arXiv:1304.6058] [INSPIRE].ADSGoogle Scholar
  61. [61]
    N. Okada and O. Seto, Isospin violating dark matter being asymmetric, Phys. Rev. D 88 (2013) 063506 [arXiv:1304.6791] [INSPIRE].ADSGoogle Scholar
  62. [62]
    G. Bélanger, A. Goudelis, J.-C. Park and A. Pukhov, Isospin-violating dark matter from a double portal, JCAP 02 (2014) 020 [arXiv:1311.0022] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  63. [63]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047, CERN, Geneva Switzerland (2013).
  64. [64]
    T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, arXiv:1311.6480 [INSPIRE].
  65. [65]
    J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of neutron electric dipole moment with QCD sum rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the Standard Model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ K and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Koichi Hamaguchi
    • 1
    • 2
  • Seng Pei Liew
    • 1
  • Takeo Moroi
    • 1
    • 2
  • Yasuhiro Yamamoto
    • 3
  1. 1.Department of PhysicsUniversity of TokyoBunkyo-kuJapan
  2. 2.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan
  3. 3.Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations