Advertisement

On holographic defect entropy

  • John Estes
  • Kristan Jensen
  • Andy O’Bannon
  • Efstratios Tsatis
  • Timm WraseEmail author
Open Access
Article

Abstract

We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3 + 1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1 + 1)-dimensional field theories generalizes to higher dimensions.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  7. [7]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-theorem: N = 2 field theories on the three-sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Affleck and A.W.W. Ludwig, Universal nonintegerground state degeneracyin critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D.R. Green, M. Mulligan and D. Starr, Boundary entropy can increase under bulk RG flow, Nucl. Phys. B 798 (2008) 491 [arXiv:0710.4348] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Yamaguchi, Holographic RG flow on the defect and g-theorem, JHEP 10 (2002) 002 [hep-th/0207171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Gutperle and J. Samani, Holographic RG-flows and boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].ADSGoogle Scholar
  26. [26]
    O.J.C. Dias, G.T. Horowitz, N. Iqbal and J.E. Santos, Vortices in holographic superfluids and superconductors as conformal defects, arXiv:1311.3673 [INSPIRE].
  27. [27]
    Y. Korovin, First order formalism for the holographic duals of defect CFTs, JHEP 04 (2014) 152 [arXiv:1312.0089] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Nozaki, T. Takayanagi and T. Ugajin, Central charges for BCFTs and holography, JHEP 06 (2012) 066 [arXiv:1205.1573] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Chiodaroli, E. D’Hoker and M. Gutperle, Holographic duals of boundary CFTs, JHEP 07 (2012) 177 [arXiv:1205.5303] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  41. [41]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Janus solutions in M-theory, JHEP 06 (2009) 018 [arXiv:0904.3313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    M.-W. Suh, Supersymmetric Janus solutions in five and ten dimensions, JHEP 09 (2011) 064 [arXiv:1107.2796] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    L. Berdichevsky and B.-E. Dahan, Local gravitational solutions dual to M 2-branes intersecting and/or ending on M 5-branes, JHEP 08 (2013) 061 [arXiv:1304.4389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Bobev, K. Pilch and N.P. Warner, Supersymmetric Janus solutions in four dimensions, arXiv:1311.4883 [INSPIRE].
  45. [45]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    A.B. Clark, D.Z. Freedman, A. Karch and M. Schnabl, Dual of the Janus solution: an interface conformal field theory, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073] [INSPIRE].ADSGoogle Scholar
  48. [48]
    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    C. Kim, E. Koh and K.-M. Lee, Janus and multifaced supersymmetric theories, JHEP 06 (2008) 040 [arXiv:0802.2143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Janus field theories from multiple M 2 branes, Phys. Rev. D 78 (2008) 025027 [arXiv:0805.1895] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    K. Jensen and A. O’Bannon, Holography, entanglement entropy and Conformal Field Theories with boundaries or defects, Phys. Rev. D 88 (2013) 106006 [arXiv:1309.4523] [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.V. Fursaev, Quantum entanglement on boundaries, JHEP 07 (2013) 119 [arXiv:1305.2334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    J. Gomis and C. Romelsberger, Bubbling defect CFTs, JHEP 08 (2006) 050 [hep-th/0604155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4 superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N =4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    J. Estes, R. Feldman and D. Krym, Exact half-BPS flux solutions in M-theory with D(2, 1 : c : 0)2 symmetry: local solutions, Phys. Rev. D 87 (2013) 046008 [arXiv:1209.1845] [INSPIRE].ADSGoogle Scholar
  60. [60]
    H. Casini and M. Huerta, A finite entanglement entropy and the c-theorem, Phys. Lett. B 600 (2004) 142 [hep-th/0405111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, Is renormalized entanglement entropy stationary at RG fixed points?, JHEP 10 (2012) 058 [arXiv:1207.3360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    H.-C. Chang and A. Karch, Entanglement entropy for probe branes, JHEP 01 (2014) 180 [arXiv:1307.5325] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Karch and C.F. Uhlemann, Generalized gravitational entropy of probe branes: flavor entanglement holographically, JHEP 05 (2014) 017 [arXiv:1402.4497] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570 [hep-th/9711035] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    T. Grover, A.M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Maciejko, X.-L. Qi, A. Karch and S.-C. Zhang, Fractional topological insulators in three dimensions, Phys. Rev. Lett. 105 (2010) 246809 [arXiv:1004.3628] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. Hoyos-Badajoz, K. Jensen and A. Karch, A holographic fractional topological insulator, Phys. Rev. D 82 (2010) 086001 [arXiv:1007.3253] [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. Estes, A. O’Bannon, E. Tsatis and T. Wrase, Holographic Wilson loops, dielectric interfaces and topological insulators, Phys. Rev. D 87 (2013) 106005 [arXiv:1210.0534] [INSPIRE].ADSGoogle Scholar
  72. [72]
    T. Nishioka and I. Yaakov, Supersymmetric Rényi entropy, JHEP 10 (2013) 155 [arXiv:1306.2958] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Sugishita and S. Terashima, Exact results in supersymmetric field theories on manifolds with boundaries, JHEP 11 (2013) 021 [arXiv:1308.1973] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    D. Honda and T. Okuda, Exact results for boundaries and domain walls in 2d supersymmetric theories, arXiv:1308.2217 [INSPIRE].
  75. [75]
    K. Hori and M. Romo, Exact results in two-dimensional (2, 2) supersymmetric gauge theories with boundary, arXiv:1308.2438 [INSPIRE].
  76. [76]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    B. Assel, J. Estes and M. Yamazaki, Large-N free energy of 3d N = 4 SCFTs and AdS 4 /CFT 3, JHEP 09 (2012) 074 [arXiv:1206.2920] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Nishioka, Y. Tachikawa and M. Yamazaki, 3d partition function as overlap of wavefunctions, JHEP 08 (2011) 003 [arXiv:1105.4390] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • John Estes
    • 1
  • Kristan Jensen
    • 2
    • 3
  • Andy O’Bannon
    • 4
  • Efstratios Tsatis
    • 5
  • Timm Wrase
    • 6
    Email author
  1. 1.Blackett LaboratoryImperial CollegeLondonUnited Kingdom
  2. 2.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada
  3. 3.C.N. Yang Institute for Theoretical Physics, SUNY Stony BrookStony BrookUnited States
  4. 4.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  5. 5.AthensGreece
  6. 6.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordUnited States

Personalised recommendations