Advertisement

Lobotomy of flux compactifications

  • Giuseppe Dibitetto
  • Adolfo GuarinoEmail author
  • Diederik Roest
Open Access
Article

Abstract

We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on \( \mathbb{T} \) 6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to \( \mathcal{N} \) = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the \( \mathcal{N} \) = 8 theory.

Keywords

Flux compactifications Extended Supersymmetry Supersymmetry and Duality Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. de Wit, D. Smit and N. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously broken N = 8 supergravity, Phys. Lett. B 84 (1979) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Blaback, U.H. Danielsson and T. Van Riet, Resolving anti-brane singularities through time-dependence, JHEP 02 (2013) 061 [arXiv:1202.1132] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I. Bena et al., Persistent anti-brane singularities, JHEP 10 (2012) 078 [arXiv:1205.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift Klebanov-Strassler, JHEP 09 (2013) 142 [arXiv:1212.4828] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Petrini, G. Solard and T. Van Riet, AdS vacua with scale separation from IIB supergravity, JHEP 11 (2013) 010 [arXiv:1308.1265] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Warner, Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys. B 231 (1984) 250 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Fischbacher, K. Pilch and N.P. Warner, New supersymmetric and stable, non-supersymmetric phases in supergravity and holographic field theory, arXiv:1010.4910 [INSPIRE].
  18. [18]
    T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged N = 8, D = 4 supergravity, JHEP 09 (2010) 068 [arXiv:0912.1636][INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Fischbacher, The encyclopedic reference of critical points for SO(8)-gauged N = 8 supergravity. Part 1: cosmological constants in the range −Λ/g 2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE].
  20. [20]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    H. Kodama and M. Nozawa, Classification and stability of vacua in maximal gauged supergravity, JHEP 01 (2013) 045 [arXiv:1210.4238] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Dall’Agata and G. Inverso, De Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Borghese, A. Guarino and D. Roest, Triality, periodicity and stability of SO(8) gauged supergravity, JHEP 05 (2013) 107 [arXiv:1302.6057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Guarino, On new maximal supergravity and its BPS domain-walls, JHEP 02 (2014) 026 [arXiv:1311.0785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Tarrío and O. Varela, Electric/magnetic duality and RG flows in AdS4/CFT3, JHEP 01 (2014) 071 [arXiv:1311.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Anabalon and D. Astefanesei, Black holes in ω-defomed gauged N = 8 supergravity, arXiv:1311.7459 [INSPIRE].
  34. [34]
    H. Lü, Y. Pang and C. Pope, An ω deformation of gauged STU supergravity, JHEP 04 (2014) 175 [arXiv:1402.1994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B. de Wit, H. Samtleben and M. Trigiante, Maximal supergravity from IIB flux compactifications, Phys. Lett. B 583 (2004) 338 [hep-th/0311224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G. Dall’Agata, G. Villadoro and F. Zwirner, Type- IIA flux compactifications and N = 4 gauged supergravities, JHEP 08 (2009) 018 [arXiv:0906.0370] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    G. Dibitetto, R. Linares and D. Roest, Flux compactifications, gauge algebras and de Sitter, Phys. Lett. B 688 (2010) 96 [arXiv:1001.3982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional flux compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × \( \mathbb{R} \) + generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    G. Aldazabal, M. Graña, D. Marqués and J. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of exceptional field Theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  48. [48]
    O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].ADSGoogle Scholar
  49. [49]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    D.S. Berman and K. Lee, Supersymmetry for gauged double field theory and generalised Scherk-Schwarz reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    H. Godazgar, M. Godazgar and H. Nicolai, Generalised geometry from the ground up, JHEP 02 (2014) 075 [arXiv:1307.8295] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    H. Godazgar, M. Godazgar and H. Nicolai, Non-linear Kaluza-Klein theory for dual fields, arXiv:1309.0266 [INSPIRE].
  53. [53]
    H. Godazgar, M. Godazgar and H. Nicolai, The embedding tensor of Scherk-Schwarz flux compactifications from eleven dimensions, Phys. Rev. D 89 (2014) 045009 [arXiv:1312.1061] [INSPIRE].ADSzbMATHGoogle Scholar
  54. [54]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  55. [55]
    H. Godazgar, M. Godazgar and H. Nicolai, Einstein-Cartan calculus for exceptional geometry, arXiv:1401.5984 [INSPIRE].
  56. [56]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Blabäck, U. Danielsson and G. Dibitetto, Accelerated universes from type IIA Compactifications, JCAP 03 (2014) 003 [arXiv:1310.8300] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 supergravity with local scaling symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    E. Cremmer, B. Julia, H. Lü and C. Pope, Dualization of dualities. 1, Nucl. Phys. B 523 (1998) 73 [hep-th/9710119] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    G. Dall’Agata and F. Zwirner, Quantum corrections to broken N = 8 supergravity, JHEP 09 (2012) 078 [arXiv:1205.4711] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    A. Borghese, R. Linares and D. Roest, Minimal stability in maximal supergravity, JHEP 07 (2012) 034 [arXiv:1112.3939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    G. Dibitetto and A. Guarino, work in progress.Google Scholar
  68. [68]
    M. Graña, J. Louis, A. Sim and D. Waldram, E 7(7) formulation of N = 2 backgrounds, JHEP 07 (2009) 104 [arXiv:0904.2333] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Graña and F. Orsi, N = 1 vacua in exceptional generalized geometry, JHEP 08 (2011) 109 [arXiv:1105.4855] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Guarino, Generalised fluxes, moduli fixing and cosmological implications, Ph.D. Thesis, Universidad Autónoma de Madrid. Departamento de Física Teórica, Madrid, Spain (2010).Google Scholar
  73. [73]
    S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    B. de Wit, Homogeneous Kahler and quaternionic manifolds in N = 2 supergravity, CERN-TH-6298-91 (1992) [INSPIRE].
  75. [75]
    G. Aldazabal, P.G. Camara, A. Font and L. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    G. Villadoro and F. Zwirner, Beyond twisted tori, Phys. Lett. B 652 (2007) 118 [arXiv:0706.3049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    G. Villadoro and F. Zwirner, On general flux backgrounds with localized sources, JHEP 11 (2007) 082 [arXiv:0710.2551] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    P.G. Camara, A. Font and L. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    A. Font, A. Guarino and J.M. Moreno, Algebras and non-geometric flux vacua, JHEP 12 (2008) 050 [arXiv:0809.3748] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    K. Behrndt and M. Cvetič, General N = 1 supersymmetric flux vacua of (massive) type IIA string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    K. Behrndt and M. Cvetič, General N = 1 supersymmetric fluxes in massive type IIA string theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    G. Aldazabal and A. Font, A second look at N = 1 supersymmetric AdS 4 vacua of type IIA supergravity, JHEP 02 (2008) 086 [arXiv:0712.1021] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    A. Betz, R. Blumenhagen, D. Lüst and F. Rennecke, A note on the CFT origin of the strong constraint of DFT, arXiv:1402.1686 [INSPIRE].
  87. [87]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Giuseppe Dibitetto
    • 1
  • Adolfo Guarino
    • 2
    Email author
  • Diederik Roest
    • 3
  1. 1.Institutionen för fysik och astronomiUniversity of UppsalaUppsalaSweden
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsBern UniversityBernSwitzerland
  3. 3.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations