Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations

  • J. Berges
  • K. BoguslavskiEmail author
  • S. Schlichting
  • R. Venugopalan
Open Access


Different thermalization scenarios for systems with large fields have been proposed in the literature based on classical-statistical lattice simulations approximating the underlying quantum dynamics. We investigate the range of validity of these simulations for condensate driven as well as fluctuation dominated initial conditions for the example of a single component scalar field theory. We show that they lead to the same phenomenon of turbulent thermalization for the whole range of (weak) couplings where the classical-statistical approach is valid. In the turbulent regime we establish the existence of a dual cascade characterized by universal scaling exponents and scaling functions. This complements previous investigations where only the direct energy cascade has been studied for the single component theory. A proposed alternative thermalization scenario for stronger couplings is shown to be beyond the range of validity of classical-statistical simulations.


Heavy Ion Phenomenology Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Berges, S. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93 (2004) 142002 [hep-ph/0403234] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Berges, A. Rothkopf and J. Schmidt, Non-thermal fixed points: effective weak-coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett. 101 (2008) 041603 [arXiv:0803.0131] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Berges and G. Hoffmeister, Nonthermal fixed points and the functional renormalization group, Nucl. Phys. B 813 (2009) 383 [arXiv:0809.5208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Micha and I.I. Tkachev, Relativistic turbulence: a long way from preheating to equilibrium, Phys. Rev. Lett. 90 (2003) 121301 [hep-ph/0210202] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Micha and I.I. Tkachev, Turbulent thermalization, Phys. Rev. D 70 (2004) 043538 [hep-ph/0403101] [INSPIRE].ADSGoogle Scholar
  6. [6]
    B. Nowak, D. Sexty and T. Gasenzer, Superfluid turbulence: nonthermal fixed point in an ultracold Bose gas, Phys. Rev. B 84 (2011) 020506 [arXiv:1012.4437] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Nowak, J. Schole, D. Sexty and T. Gasenzer, Nonthermal fixed points, vortex statistics and superfluid turbulence in an ultracold Bose gas, Phys. Rev. A 85 (2012) 043627 [arXiv:1111.6127] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Berges and D. Sexty, Strong versus weak wave-turbulence in relativistic field theory, Phys. Rev. D 83 (2011) 085004 [arXiv:1012.5944] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Berges and D. Sexty, Bose condensation far from equilibrium, Phys. Rev. Lett. 108 (2012) 161601 [arXiv:1201.0687] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Nowak and T. Gasenzer, On a new twist in the dynamics of Bose-Einstein condensation, arXiv:1206.3181 [INSPIRE].
  11. [11]
    T. Gasenzer, L. McLerran, J.M. Pawlowski and D. Sexty, Gauge turbulence, topological defect dynamics and condensation in Higgs models, arXiv:1307.5301 [INSPIRE].
  12. [12]
    J. Berges, S. Scheffler and D. Sexty, Turbulence in nonabelian gauge theory, Phys. Lett. B 681 (2009) 362 [arXiv:0811.4293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Schlichting, Turbulent thermalization of weakly coupled non-abelian plasmas, Phys. Rev. D 86 (2012) 065008 [arXiv:1207.1450] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Kurkela and G.D. Moore, UV cascade in classical Yang-Mills theory, Phys. Rev. D 86 (2012) 056008 [arXiv:1207.1663] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies, Phys. Rev. D 89 (2014) 074011 [arXiv:1303.5650] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, arXiv:1311.3005 [INSPIRE].
  17. [17]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Romatschke and M. Strickland, Collective modes of an anisotropic quark gluon plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Attems, A. Rebhan and M. Strickland, Instabilities of an anisotropically expanding non-Abelian plasma: 3D + 3V discretized hard-loop simulations, Phys. Rev. D 87 (2013) 025010 [arXiv:1207.5795] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Romatschke and R. Venugopalan, The unstable glasma, Phys. Rev. D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Fukushima and F. Gelis, The evolving glasma, Nucl. Phys. A 874 (2012) 108 [arXiv:1106.1396] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Berges and S. Schlichting, The non-linear glasma, Phys. Rev. D 87 (2013) 014026 [arXiv:1209.0817] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Epelbaum and F. Gelis, Fluctuations of the initial color fields in high energy heavy ion collisions, Phys. Rev. D 88 (2013) 085015 [arXiv:1307.1765] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Dusling, T. Epelbaum, F. Gelis and R. Venugopalan, Instability induced pressure isotropization in a longitudinally expanding system, Phys. Rev. D 86 (2012) 085040 [arXiv:1206.3336] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Epelbaum and F. Gelis, Role of quantum fluctuations in a system with strong fields: spectral properties and thermalization, Nucl. Phys. A 872 (2011) 210 [arXiv:1107.0668] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Berges and J. Serreau, Parametric resonance in quantum field theory, Phys. Rev. Lett. 91 (2003) 111601 [hep-ph/0208070] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Arrizabalaga, J. Smit and A. Tranberg, Tachyonic preheating using 2PI-1/N dynamics and the classical approximation, JHEP 10 (2004) 017 [hep-ph/0409177] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Aarts and J. Berges, Classical aspects of quantum fields far from equilibrium, Phys. Rev. Lett. 88 (2002) 041603 [hep-ph/0107129] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G.D. Moore, Problems with lattice methods for electroweak preheating, JHEP 11 (2001) 021 [hep-ph/0109206] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Gasenzer, B. Nowak and D. Sexty, Charge separation in reheating after cosmological inflation, Phys. Lett. B 710 (2012) 500 [arXiv:1108.0541] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Mueller and D. Son, On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers, Phys. Lett. B 582 (2004) 279 [hep-ph/0212198] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Jeon, The Boltzmann equation in classical and quantum field theory, Phys. Rev. C 72 (2005) 014907 [hep-ph/0412121] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2005) 3 [hep-ph/0409233] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Berges and T. Gasenzer, Quantum versus classical statistical dynamics of an ultracold Bose gas, Phys. Rev. A 76 (2007) 033604 [cond-mat/0703163] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Jeon, Color glass condensate in Schwinger-Keldysh QCD, Annals Phys. 340 (2014) 119 [arXiv:1308.0263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Berges, D. Gelfand and J. Pruschke, Quantum theory of fermion production after inflation, Phys. Rev. Lett. 107 (2011) 061301 [arXiv:1012.4632] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Berges, D. Gelfand and D. Sexty, Amplified fermion production from overpopulated Bose fields, Phys. Rev. D 89 (2014) 025001 [arXiv:1308.2180] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.Y. Khlebnikov and I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [hep-ph/9603378] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Prokopec and T.G. Roos, Lattice study of classical inflaton decay, Phys. Rev. D 55 (1997) 3768 [hep-ph/9610400] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Baacke, K. Heitmann and C. Patzold, Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field, Phys. Rev. D 58 (1998) 125013 [hep-ph/9806205] [INSPIRE].ADSGoogle Scholar
  46. [46]
    P.B. Greene and L. Kofman, Preheating of fermions, Phys. Lett. B 448 (1999) 6 [hep-ph/9807339] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Boyanovsky, H. de Vega, R. Holman, D. Lee and A. Singh, Dissipation via particle production in scalar field theories, Phys. Rev. D 51 (1995) 4419 [hep-ph/9408214] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P.B. Greene, L. Kofman, A.D. Linde and A.A. Starobinsky, Structure of resonance in preheating after inflation, Phys. Rev. D 56 (1997) 6175 [hep-ph/9705347] [INSPIRE].ADSGoogle Scholar
  49. [49]
    D.I. Podolsky, G.N. Felder, L. Kofman and M. Peloso, Equation of state and beginning of thermalization after preheating, Phys. Rev. D 73 (2006) 023501 [hep-ph/0507096] [INSPIRE].ADSGoogle Scholar
  50. [50]
    K. Dusling, T. Epelbaum, F. Gelis and R. Venugopalan, Role of quantum fluctuations in a system with strong fields: Onset of hydrodynamical flow, Nucl. Phys. A 850 (2011) 69 [arXiv:1009.4363] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V.E. Zakharov, V.S. Lvov and G. Falkovich, Kolmogorov spectra of turbulence I: wave turbulence, Springer, Germany (1992).CrossRefzbMATHGoogle Scholar
  52. [52]
    J. Berges, Controlled nonperturbative dynamics of quantum fields out-of-equilibrium, Nucl. Phys. A 699 (2002) 847 [hep-ph/0105311] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    J. Berges, S. Schlichting and D. Sexty, Dynamic critical phenomena from spectral functions on the lattice, Nucl. Phys. B 832 (2010) 228 [arXiv:0912.3135] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. Berges
    • 1
    • 2
  • K. Boguslavski
    • 1
    Email author
  • S. Schlichting
    • 3
  • R. Venugopalan
    • 3
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  2. 2.ExtreMe Matter Institute (EMMI), GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  3. 3.Brookhaven National Laboratory, Physics DepartmentUptonUnited States

Personalised recommendations