Electroweak precision measurements in supersymmetric models with a U(1) R lepton number

  • Hugues Beauchesne
  • Thomas Grégoire
Open Access


As experimental constraints on the parameter space of the MSSM and close variations thereof become stronger, the motivation to explore supersymmetric models that challenge some of the standard assumptions of the MSSM also become stronger. For example, models where the gauginos are Dirac instead of Majorana have recently received more attention. Beside allowing for a supersoft SUSY breaking mechanism where the gauginos only provide finite threshold corrections to scalar masses, the cross section for the production of a squark pairs is reduced. In addition, Dirac gauginos can be used to build models that possess a U(1)R symmetry. This symmetry can then be identified with a lepton number, leading to models that are quite different from conventional scenarios. The sneutrinos in these models can acquire a vev and give mass to the leptons and the down-type squark. The phenomenology is novel, combining signatures that are typical of R-parity violating scenarios with signatures arising from leptoquarks. Correspondingly the constraints from electroweak precision data are also different. In these models, one of the leptons mixes with gauginos and superpotential Yukawa couplings can contribute to EWPM at tree level. In addition, lepton universality is broken. In this paper we adapt the operators analysis of Han and Skiba [1] to include the relevant violation of lepton universality, and do a global fit of the model to electroweak precision data, including all relevant tree-level and loop-level effects. We obtain bounds on the vev of the sneutrino and on the superpotential couplings of the model.


Beyond Standard Model Supersymmetric Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].ADSGoogle Scholar
  2. [2]
    L. Hall and L. Randall, U(1)R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Randall and N. Rius, The minimal U(1)R symmetric model revisited, Phys. Lett. B 286 (1992) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a mu term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Z. Chacko, P.J. Fox and H. Murayama, Localized supersoft supersymmetry breaking, Nucl. Phys. B 706 (2005) 53 [hep-ph/0406142] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Benakli and M. Goodsell, Dirac gauginos in general gauge mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Choi, M. Drees, A. Freitas and P. Zerwas, Testing the Majorana nature of gluinos and neutralinos, Phys. Rev. D 78 (2008) 095007 [arXiv:0808.2410] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G.D. Kribs, T. Okui and T.S. Roy, Viable gravity-mediated supersymmetry breaking, Phys. Rev. D 82 (2010) 115010 [arXiv:1008.1798] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Abel and M. Goodsell, Easy Dirac gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Davies, J. March-Russell and M. McCullough, A supersymmetric one Higgs doublet model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Kumar and E. Ponton, Electroweak baryogenesis and dark matter with an approximate R-symmetry, JHEP 11 (2011) 037 [arXiv:1107.1719] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Bertuzzo and C. Frugiuele, Fitting neutrino physics with a U(1)R lepton number, JHEP 05 (2012) 100 [arXiv:1203.5340] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Heikinheimo, M. Kellerstein and V. Sanz, How Many Supersymmetries?, JHEP 04 (2012) 043 [arXiv:1111.4322] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003) 085018 [hep-ph/0302001] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    C. Frugiuele and T. Gregoire, Making the sneutrino a Higgs with a U(1)R lepton number, Phys. Rev. D 85 (2012) 015016 [arXiv:1107.4634] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ’L = R’ — U(1)R as the origin of leptonicRPV’, JHEP 03 (2013) 156 [arXiv:1210.0541] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Fayet, Massive gluinos, Phys. Lett. B 78 (1978) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ’L = R’ — U(1)R lepton number at the LHC, JHEP 05 (2013) 012 [arXiv:1210.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Z. Han, Electroweak constraints on effective theories with U(2) × (1) flavor symmetry, Phys. Rev. D 73 (2006) 015005 [hep-ph/0510125] [INSPIRE].ADSGoogle Scholar
  27. [27]
    E. Bertuzzo, C. Frugiuele, T. Grégoire and E. Pontón, Dirac gauginos, R symmetry and the 125 GeV Higgs, to appear.Google Scholar
  28. [28]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  29. [29]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Marandella, C. Schappacher and A. Strumia, Supersymmetry and precision data after LEP2, Nucl. Phys. B 715 (2005) 173 [hep-ph/0502095] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Ledroit and G. Sajot, Indirect limits on SUSY R p violating couplings λ and λ, GDR-S-008 (1998).Google Scholar
  33. [33]
    C. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science 275 (1997) 1759 [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    P. Vetter, D. Meekhof, P. Majumder, S. Lamoreaux and E. Fortson, Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium, Phys. Rev. Lett. 74 (1995) 2658 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Edwards, S. Phipp, P. Baird and S. Nakayama, Precise measurement of parity nonconserving optical rotation in atomic thallium, Phys. Rev. Lett. 74 (1995) 2654 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    NuTeV collaboration, G. Zeller et al., A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    A. Blondel, P. Bockmann, H. Burkhardt, F. Dydak, A. Grant et al., Electroweak parameters from a high statistics neutrino nucleon scattering experiment, Z. Phys. C 45 (1990) 361 [INSPIRE].Google Scholar
  38. [38]
    CHARM collaboration, J. Allaby et al., A precise determination of the electroweak mixing angle from semileptonic neutrino scattering, Phys. Lett. B 177 (1986) 446 [INSPIRE].ADSGoogle Scholar
  39. [39]
    CCFR, E744, E770 collaboration, K.S. McFarland et al., A precision measurement of electroweak parameters in neutrino-nucleon scattering, Eur. Phys. J. C 1 (1998) 509 [hep-ex/9701010] [INSPIRE].ADSGoogle Scholar
  40. [40]
    CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].ADSGoogle Scholar
  41. [41]
    LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavor Group collaboration, t.S. Electroweak, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].
  42. [42]
    OPAL collaboration, G. Abbiendi et al., Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189 GeV to 209 GeV at LEP, Eur. Phys. J. C 33 (2004) 173 [hep-ex/0309053] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L3 collaboration, P. Achard et al., Measurement of the cross section of W-boson pair production at LEP, Phys. Lett. B 600 (2004) 22 [hep-ex/0409016] [INSPIRE].Google Scholar
  44. [44]
    CDF and D0 collaboration, V. Abazov et al., Combination of CDF and DØ results on W boson mass and width, Phys. Rev. D 70 (2004) 092008 [hep-ex/0311039] [INSPIRE].ADSGoogle Scholar
  45. [45]
    H. Itoyama and N. Maru, D-term dynamical supersymmetry breaking generating split N = 2 gaugino masses of mixed Majorana-Dirac type, Int. J. Mod. Phys. A 27 (2012) 1250159 [arXiv:1109.2276] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    H. Itoyama and N. Maru, D-term triggered dynamical supersymmetry breaking, Phys. Rev. D 88 (2013) 025012 [arXiv:1301.7548] [INSPIRE].ADSzbMATHGoogle Scholar
  47. [47]
    H. Itoyama and N. Maru, 126 GeV Higgs boson associated with D-term triggered dynamical supersymmetry breaking, arXiv:1312.4157 [INSPIRE].
  48. [48]
    S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U (1)Rlepton number model, JHEP 01 (2014) 101 [arXiv:1309.6538] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Ottawa-Carleton Institute for Physics, Department of PhysicsOttawaCanada

Personalised recommendations