Skip to main content

Walls, lines, and spectral dualities in 3d gauge theories

A preprint version of the article is available at arXiv.

Abstract

In this paper we analyze various half-BPS defects in a general three dimensional \( \mathcal{N} \) = 2 supersymmetric gauge theory \( \mathcal{T} \). They correspond to closed paths in SUSY parameter space and their tension is computed by evaluating period integrals along these paths. In addition to such defects, we also study wall defects that interpolate between \( \mathcal{T} \) and its SL(2, \( \mathbb{Z} \)) transform by coupling the 3d theory to a 4d theory with S-duality wall. We propose a novel spectral duality between 3d gauge theories and integrable systems. This duality complements a similar duality discovered by Nekrasov and Shatashvili. As another application, for 3d \( \mathcal{N} \) = 2 theories associated with knots and 3-manifolds we compute periods of (super) A-polynomial curves and relate the results with the spectrum of domain walls and line operators.

References

  1. [1]

    P. Fendley, S. Mathur, C. Vafa and N. Warner, Integrable deformations and scattering matrices for the N = 2 supersymmetric discrete series, Phys. Lett. B 243 (1990) 257 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    P. Fendley, W. Lerche, S. Mathur and N. Warner, N = 2 supersymmetric integrable models from affine Toda theories, Nucl. Phys. B 348 (1991) 66 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    W. Lerche and N. Warner, Polytopes and solitons in integrable, N = 2 supersymmetric Landau-Ginzburg theories, Nucl. Phys. B 358 (1991) 571 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, arXiv:1112.5179 [INSPIRE].

  6. [6]

    S. Pasquetti, Factorisation of N = 2 theories on the squashed 3-sphere, JHEP 04 (2012) 120 [arXiv:1111.6905] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    C. Beem, T. Dimofte and S. Pasquetti, Holomorphic blocks in three dimensions, arXiv:1211.1986 [INSPIRE].

  8. [8]

    T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, JHEP 05 (2013) 109 [arXiv:1106.4550] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    J.A. Harvey, G.W. Moore and A. Strominger, Reducing S duality to T duality, Phys. Rev. D 52 (1995) 7161 [hep-th/9501022] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    M. Bershadsky, A. Johansen, V. Sadov and C. Vafa, Topological reduction of 4D SYM to 2D σ-models, Nucl. Phys. B 448 (1995) 166 [hep-th/9501096] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  11. [11]

    N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  12. [12]

    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].

  14. [14]

    H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B 463 (1996) 55 [hep-th/9511164] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    M. Henningson, Commutation relations for surface operators in six-dimensional (2, 0) theory, JHEP 03 (2001) 011 [hep-th/0012070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].

  21. [21]

    D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS 5 and its field theory dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Clark, D. Freedman, A. Karch and M. Schnabl, Dual of the Janus solution: an interface conformal field theory, Phys. Rev. D 71 (2005) 066003 [hep-th/0407073] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  24. [24]

    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    A.E. Lawrence and N. Nekrasov, Instanton sums and five-dimensional gauge theories, Nucl. Phys. B 513 (1998) 239 [hep-th/9706025] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].

  32. [32]

    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    H. Fuji, S. Gukov, P. Sulkowski and H. Awata, Volume conjecture: refined and categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    A. Iqbal and C. Vafa, BPS degeneracies and superconformal index in diverse dimensions, arXiv:1210.3605 [INSPIRE].

  36. [36]

    S. Cecotti and C. Vafa, 2d wall-crossing, R-twisting and a supersymmetric index, arXiv:1002.3638 [INSPIRE].

  37. [37]

    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with abelian symmetry, hep-th/0307041 [INSPIRE].

  38. [38]

    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    B. Kol, 5D field theories and M-theory, JHEP 11 (1999) 026 [hep-th/9705031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  42. [42]

    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    N. Dorey and D. Tong, Mirror symmetry and toric geometry in three-dimensional gauge theories, JHEP 05 (2000) 018 [hep-th/9911094] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].

  51. [51]

    N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. [53]

    T. Dimofte, S. Gukov, J. Lenells and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys. 3 (2009) 363 [arXiv:0903.2472] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    T. Dimofte, Quantum Riemann surfaces in Chern-Simons theory, arXiv:1102.4847 [INSPIRE].

  55. [55]

    A. Mironov and A. Morozov, Equations on knot polynomials and 3d/5d duality, AIP Conf. Proc. 1483 (2012) 189 [arXiv:1208.2282] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  56. [56]

    M. Adams, J.P. Harnad and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990) 299 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  57. [57]

    G. Wilson, Bispectral commutative ordinary differential operators, J. Reine Angew. Math. 442 (1993) 177.

    MathSciNet  MATH  Google Scholar 

  58. [58]

    S. Ruijsenaars, Action angle maps and scattering theory for some finite dimensional integrable systems. 1. The pure soliton case, Commun. Math. Phys. 115 (1988) 127 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    M. Bertola, B. Eynard, and J.P. Harnad, Duality, biorthogonal polynomials and multimatrix models, Commun. Math. Phys. 229 (2002) 73 [nlin/0108049].

    ADS  Article  MATH  Google Scholar 

  60. [60]

    E. Mukhin, V. Tarasov, and A. Varchenko, Bispectral and (gl N , gl M ) dualities, discrete versus differential, Adv. Math. 218 (2008) 216.

    MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    E. Mukhin, V. Tarasov and A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser hamiltonians, SIGMA 8 (2012) 72 [arXiv:1201.3990].

    MathSciNet  MATH  Google Scholar 

  62. [62]

    A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Lett. Math. Phys. 103 (2013) 299 [arXiv:1206.6349] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. [63]

    K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in Ω background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. [64]

    A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, in Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2 volume 180, American Mathematical Society, Providence U.S.A. (1997).

  65. [65]

    E. Mukhin, V. Tarasov, and A. Varchenko, Three sides of the geometric Langlands correspondence for gl N Gaudin model and Bethe vector averaging maps, Adv. Stud. Pure Math. 62 (2012) 475.

    MATH  Google Scholar 

  66. [66]

    A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    N. Dorey, S. Lee and T.J. Hollowood, Quantization of integrable systems and a 2d/4d duality, JHEP 10 (2011) 077 [arXiv:1103.5726] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    A. Gorsky, S. Gukov and A. Mironov, SUSY field theories, integrable systems and their stringy/brane origin. 2, Nucl. Phys. B 518 (1998) 689 [hep-th/9710239] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    A. Marshakov and A. Mironov, 5D and 6D supersymmetric gauge theories: prepotentials from integrable systems, Nucl. Phys. B 518 (1998) 59 [hep-th/9711156] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. [70]

    G. Pronko and Y. Stroganov, Bethe equationson the wrong side of equator’, J. Phys. A 32 (1999) 2333 [hep-th/9808153] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  71. [71]

    A.G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006) 12927 [hep-th/0602093] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  72. [72]

    H.-Y. Chen, N. Dorey, T.J. Hollowood and S. Lee, A new 2d/4d duality via integrability, JHEP 09 (2011) 040 [arXiv:1104.3021] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. [73]

    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].

  74. [74]

    S. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110 (1987) 191.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. [75]

    S. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Annals Phys. 170 (1986) 370 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  76. [76]

    H. Braden, A. Marshakov, A. Mironov and A. Morozov, The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory, Nucl. Phys. B 558 (1999) 371 [hep-th/9902205] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. [77]

    A. Gerasimov, D. Lebedev and S. Oblezin, Baxter operator formalism for Macdonald polynomials, Lett. Math. Phys. 104 (2014) 2 [arXiv:1204.0926].

    MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    I. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford U.K. (1995).

    MATH  Google Scholar 

  79. [79]

    S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  80. [80]

    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

  81. [81]

    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. [82]

    D. Cooper, M. Culler, H. Gillet, D. Long and P.B. Shalen, Plane curves associated to character varieties of 3-manifolds, Inv. Math. 118 (1994) 47.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  83. [83]

    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  84. [84]

    H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    S. Gukov and I. Saberi, Lectures on Knot homology and quantum curves, arXiv:1211.6075 [INSPIRE].

  86. [86]

    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].

  87. [87]

    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  88. [88]

    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  89. [89]

    G. Borot and B. Eynard, All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials, arXiv:1205.2261 [INSPIRE].

  90. [90]

    I.R. Aitchison and J. H. Rubinstein, Incompressible surfaces and the topology of 3-dimensional manifolds, J. Austral. Math. Soc. Ser. A 55 (1993) 1.

    MathSciNet  Article  MATH  Google Scholar 

  91. [91]

    A.E. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math. 99 (1982) 373.

    MathSciNet  Article  MATH  Google Scholar 

  92. [92]

    W. Thurston, Hyperbolic geometry and 3-manifolds, in Low-dimensional topology (Bangor, 1979), London Mathematical Society Lecture Note Series volume 48, Cambridge University Press, Cambridge U.K. (1982).

  93. [93]

    A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math. 79 (1985) 225.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  94. [94]

    N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  95. [95]

    K. Hosomichi, S. Lee and J. Park, AGT on the S-duality wall, JHEP 12 (2010) 079 [arXiv:1009.0340] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  96. [96]

    Y. Terashima and M. Yamazaki, SL(2, \( \mathbb{R} \)) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  97. [97]

    S. Cecotti, C. Cordova and C. Vafa, Braids, walls and mirrors, arXiv:1110.2115 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Putrov.

Additional information

ArXiv ePrint: 1302.0015

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gadde, A., Gukov, S. & Putrov, P. Walls, lines, and spectral dualities in 3d gauge theories. J. High Energ. Phys. 2014, 47 (2014). https://doi.org/10.1007/JHEP05(2014)047

Download citation

Keywords

  • Supersymmetric gauge theory
  • Solitons Monopoles and Instantons
  • Integrable Equations in Physics
  • Brane Dynamics in Gauge Theories