Advertisement

Hybrid conformal field theories

  • Marco BertoliniEmail author
  • Ilarion V. Melnikov
  • M. Ronen Plesser
Open Access
Article

Abstract

We describe a class of (2,2) superconformal field theories obtained by fibering a Landau-Ginzburg orbifold CFT over a compact Kähler base manifold. While such models are naturally obtained as phases in a gauged linear sigma model, our construction is independent of such an embedding. We discuss the general properties of such theories and present a technique to study the massless spectrum of the associated heterotic compactification. We test the validity of our method by applying it to hybrid phases of linear models and comparing spectra among the phases.

Keywords

Superstrings and Heterotic Strings Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    P.S. Aspinwall and M.R. Plesser, Decompactifications and Massless D-branes in Hybrid Models, JHEP 07 (2010) 078 [arXiv:0909.0252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P.S. Aspinwall, I.V. Melnikov and M.R. Plesser, (0,2) Elephants, JHEP 01 (2012) 060 [arXiv:1008.2156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    P.S. Aspinwall and M.R. Plesser, Elusive worldsheet instantons in heterotic string compactifications, arXiv:1106.2998 [INSPIRE].
  6. [6]
    P.S. Aspinwall, A McKay-like correspondence for (0,2)-deformations, arXiv:1110.2524 [INSPIRE].
  7. [7]
    R. Blumenhagen and T. Rahn, Landscape study of target space duality of (0,2) heterotic string models, JHEP 09 (2011) 098 [arXiv:1106.4998] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Kachru and E. Witten, Computing the complete massless spectrum of a Landau-Ginzburg orbifold, Nucl. Phys. B 407 (1993) 637 [hep-th/9307038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. Distler and S. Kachru, (0,2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    I.V. Melnikov and E. Sharpe, On marginal deformations of (0,2) non-linear σ-models, Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012 [INSPIRE].
  12. [12]
    P. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, (1990).CrossRefzbMATHGoogle Scholar
  13. [13]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, John Wiley & Sons, New York, (1978).zbMATHGoogle Scholar
  15. [15]
    R. Lazarsfeld, A Series of Modern Surveys in Mathematics. Volume 48: Positivity in algebraic geometry. I, Springer-Verlag, Berlin, (2004).Google Scholar
  16. [16]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, (1992).Google Scholar
  17. [17]
    W. Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, (2006) doi: 10.4171/025.
  18. [18]
    A. Moroianu, Lectures on Kähler geometry, volume 69, Cambridge University Press, Cambridge, (2007).CrossRefzbMATHGoogle Scholar
  19. [19]
    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Commun. Math. Phys. 150 (1992) 137 [hep-th/9202039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Klemm and R. Schimmrigk, Landau-Ginzburg string vacua, Nucl. Phys. B 411 (1994) 559 [hep-th/9204060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and Conformal Field Theory Or Can String Theory Predict the Weak Mixing Angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    C. Vafa, String Vacua and Orbifoldized L-G Models, Mod. Phys. Lett. A 4 (1989) 1169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    K.A. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nucl. Phys. B 339 (1990) 95 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N. Addington and P.S. Aspinwall, Categories of Massless D-branes and del Pezzo Surfaces, arXiv:1305.5767 [INSPIRE].
  27. [27]
    E.J. Martinec, Algebraic Geometry and Effective Lagrangians, Phys. Lett. B 217 (1989) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Vafa and N.P. Warner, Catastrophes and the Classification of Conformal Theories, Phys. Lett. B 218 (1989) 51 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0,2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    N.A. Nekrasov, Lectures on curved beta-gamma systems, pure spinors and anomalies, hep-th/0511008 [INSPIRE].
  32. [32]
    E. Witten, Two-dimensional models with (0,2) supersymmetry: Perturbative aspects, Adv. Theor. Math. Phys. 11 (2007) [hep-th/0504078] [INSPIRE].
  33. [33]
    R. Bott and L.W. Tu, Graduate Texts in Mathematics. Volume 82: Differential forms in algebraic topology, Springer-Verlag, New York, (1982).CrossRefGoogle Scholar
  34. [34]
    T. Kawai and K. Mohri, Geometry of (0,2) Landau-Ginzburg orbifolds, Nucl. Phys. B 425 (1994) 191 [hep-th/9402148] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    I.V. Melnikov, (0,2) Landau-Ginzburg Models and Residues, JHEP 09 (2009) 118 [arXiv:0902.3908] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. Distler and B.R. Greene, Aspects of (2,0) String Compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, Commun. Math. Phys. 326 (2014) 287 [arXiv:0904.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    D.R. Morrison and M.R. Plesser, Summing the instantons: Quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P.S. Aspinwall and B.R. Greene, On the geometric interpretation of N = 2 superconformal theories, Nucl. Phys. B 437 (1995) 205 [hep-th/9409110] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    N.M. Addington, E.P. Segal and E. Sharpe, D-brane probes, branched double covers and noncommutative resolutions, arXiv:1211.2446 [INSPIRE].
  42. [42]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative Effects on the String World Sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0,2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Basu and S. Sethi, World sheet stability of (0,2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    E. Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. (4) 12 (1979) 269.Google Scholar
  48. [48]
    D. Freedman and G. Gibbons, Remarks on supersymmetry and Kähler geometry, in Superspace and supergravity, S. Hawking and M. Rocek, eds., Cambridge University Press, (1981).Google Scholar
  49. [49]
    K. Higashijima, T. Kimura and M. Nitta, Construction of supersymmetric nonlinear σ-models on noncompact Calabi-Yau manifolds with isometry, Nucl. Phys. Proc. Suppl. 117 (2003) 867 [hep-th/0210034] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    D.D. Joyce, Compact manifolds with special holonomy. Oxford Mathematical Monographs, Oxford University Press, Oxford U.K., (2000).zbMATHGoogle Scholar
  51. [51]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. AMS 85 (1957) 181.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Marco Bertolini
    • 1
    Email author
  • Ilarion V. Melnikov
    • 2
  • M. Ronen Plesser
    • 1
  1. 1.Center for Geometry and Theoretical PhysicsDuke UniversityDurhamUnited States
  2. 2.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany

Personalised recommendations