The mass of the adjoint pion in \( \mathcal{N} \) = 1 supersymmetric Yang-Mills theory

  • G. Münster
  • H. Stüwe
Open Access


In Monte Carlo simulations of \( \mathcal{N} \) = 1 supersymmetric Yang-Mills theory the mass of the unphysical adjoint pion, which is easily obtained numerically, is being used for the tuning to the limit of vanishing gluino mass. In this article we show how to define the adjoint pion in the framework of partially quenched chiral perturbation theory and we derive a relation between its mass and the mass of the gluino analogous to the Gell-Mann-Oakes-Renner relation of QCD.


Supersymmetric gauge theory Spontaneous Symmetry Breaking Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bergner, I. Montvay, G. Münster, U.D. Özugurel and D. Sandbrink, Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory, JHEP 11 (2013) 061 [arXiv:1304.2168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Bergner, I. Montvay, G. Münster, D. Sandbrink and U.D. Özugurel, N = 1 supersymmetric Yang-Mills theory on the lattice, PoS(LATTICE 2013)483 [arXiv:1311.1681] [INSPIRE].
  3. [3]
    G. Curci and G. Veneziano, Supersymmetry and the Lattice: A Reconciliation?, Nucl. Phys. B 292 (1987) 555 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Suzuki, Supersymmetry, chiral symmetry and the generalized BRS transformation in lattice formulations of 4D \( \mathcal{N} \) = 1 SYM, Nucl. Phys. B 861 (2012) 290 [arXiv:1202.2598] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    DESY-Munster-Roma collaboration, F. Farchioni et al., The Supersymmetric Ward identities on the lattice, Eur. Phys. J. C 23 (2002) 719 [hep-lat/0111008] [INSPIRE].ADSzbMATHGoogle Scholar
  6. [6]
    M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Veneziano and S. Yankielowicz, An Effective Lagrangian for the Pure N = 1 Supersymmetric Yang-Mills Theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Demmouche et al., Simulation of 4d N = 1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing, Eur. Phys. J. C 69 (2010) 147 [arXiv:1003.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Farchioni et al., Hadron masses in QCD with one quark flavour, Eur. Phys. J. C 52 (2007) 305 [arXiv:0706.1131] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Morel, Chiral Logarithms In Quenched QCD, J. Phys. France 48 (1987) 1111.CrossRefGoogle Scholar
  11. [11]
    M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175 (1980) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.M. Halasz and J.J.M. Verbaarschot, Effective Lagrangians and chiral random matrix theory, Phys. Rev. D 52 (1995) 2563 [hep-th/9502096] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C.W. Bernard and M.F.L. Golterman, Partially quenched gauge theories and an application to staggered fermions, Phys. Rev. D 49 (1994) 486 [hep-lat/9306005] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.R. Sharpe, Enhanced chiral logarithms in partially quenched QCD, Phys. Rev. D 56 (1997) 7052 [Erratum ibid. D 62 (2000) 099901] [hep-lat/9707018] [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität MünsterMünsterGermany

Personalised recommendations