Explicit de Sitter flux vacua for global string models with chiral matter

  • Michele Cicoli
  • Denis Klevers
  • Sven Krippendorf
  • Christoph Mayrhofer
  • Fernando Quevedo
  • Roberto Valandro
Open Access
Article

Abstract

We address the open question of performing an explicit stabilisation of all closed string moduli (including dilaton, complex structure and Kähler moduli) in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content or some close extensions. In order to control complex structure moduli stabilisation we consider Calabi-Yau manifolds which exhibit a discrete symmetry that reduces the effective number of complex structure moduli. We calculate the corresponding periods in the symplectic basis of invariant three-cycles and find explicit flux vacua for concrete examples. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kähler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative α corrections as in the LARGE Volume Scenario. In the considered example the visible sector lives at a dP6 singularity which can be higgsed to the phenomenologically interesting class of models at the dP3 singularity.

Keywords

Flux compactifications dS vacua in string theory Superstring Vacua Intersecting branes models 

References

  1. [1]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012) [INSPIRE].MATHGoogle Scholar
  3. [3]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  5. [5]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Maharana and E. Palti, Models of particle physics from type IIB string theory and F-theory: a review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at toric singularities: model building, Yukawa couplings and flavour physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    C.P. Burgess, S. Krippendorf, A. Maharana and F. Quevedo, Radiative fermion masses in local D-brane models, JHEP 05 (2011) 103 [arXiv:1102.1973] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  10. [10]
    M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a systematic construction of realistic D-brane models on a del Pezzo singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Vafa, Geometry of grand unification, arXiv:0911.3008 [INSPIRE].
  14. [14]
    M. Wijnholt, F-theory, GUTs and chiral matter, arXiv:0809.3878 [INSPIRE].
  15. [15]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli stabilisation for chiral global models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 branes at singularities: constraints from global embedding and moduli stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, The web of D-branes at singularities in compact Calabi-Yau manifolds, JHEP 05 (2013) 114 [arXiv:1304.2771] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    C. Mayrhofer, Compactifications of type IIB string theory and F-theory models by means of toric geometry, Ph.D. Thesis, Technische Universität Wien (2010).Google Scholar
  20. [20]
    M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    X. Gao and P. Shukla, On classifying the divisor involutions in Calabi-Yau threefolds, JHEP 11 (2013) 170 [arXiv:1307.1139] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    B.R. Greene and M.R. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP 10 (2012) 163 [arXiv:1208.3208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Martinez-Pedrera, D. Mehta, M. Rummel and A. Westphal, Finding all flux vacua in an explicit example, JHEP 06 (2013) 110 [arXiv:1212.4530] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    G. Curio, A. Klemm, D. Lüst and S. Theisen, On the vacuum structure of type-II string compactifications on Calabi-Yau spaces with H fluxes, Nucl. Phys. B 609 (2001) 3 [hep-th/0012213] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    A. Klemm, Topological string theory on Calabi-Yau threefolds, PoS(RTN2005)002 [INSPIRE].
  30. [30]
    P. Mayr, Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence, JHEP 01 (2001) 018 [hep-th/0010223] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing brane and flux superpotentials in F-theory compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    A. Klemm, Instanton.Google Scholar
  33. [33]
    M. Kreuzer and H. Skarke, PALP: a package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun. 157 (2004) 87 [math.NA/0204356] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  34. [34]
    A.P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALPa user manual, arXiv:1205.4147 [INSPIRE].
  35. [35]
    V. Braun and A.Y. Novoseltsev, Toric varieties framework for Sage, The Sage Development Team (2012), http://www.sagemath.org/doc/reference/schemes/sage/schemes/toric/variety.html.Google Scholar
  36. [36]
    P. Berglund, S.H. Katz and A. Klemm, Mirror symmetry and the moduli space for generic hypersurfaces in toric varieties, Nucl. Phys. B 456 (1995) 153 [hep-th/9506091] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    P. Shanahan, The Atiyah-Singer index theorem, Lect. Notes Math. 638 (1978) 1.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    R. Blumenhagen, A. Collinucci and B. Jurke, On instanton effects in F-theory, JHEP 08 (2010) 079 [arXiv:1002.1894] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    J. Distler and B.R. Greene, Aspects of (2,0) string compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Brunner and K. Hori, Orientifolds and mirror symmetry, JHEP 11 (2004) 005 [hep-th/0303135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    V. Balasubramanian, P. Berglund, V. Braun and I. Garcia-Etxebarria, Global embeddings for branes at toric singularities, JHEP 10 (2012) 132 [arXiv:1201.5379] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2004) 1117 [hep-th/0212021] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP 10 (2008) 014 [arXiv:0807.3012] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Yamazaki, Brane tilings and their applications, Fortschr. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    P. Berglund and I. Garcia-Etxebarria, D-brane instantons on non-spin cycles, JHEP 01 (2013) 056 [arXiv:1210.1221] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulusSwiss cheesechiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Bianchi, A. Collinucci and L. Martucci, Magnetized E3-brane instantons in F-theory, JHEP 12 (2011) 045 [arXiv:1107.3732] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    M. Bianchi, G. Inverso and L. Martucci, Brane instantons and fluxes in F-theory, JHEP 07 (2013) 037 [arXiv:1212.0024] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in type IIB orientifold compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  59. [59]
    D.J. Bates, D. Brake and M. Niemerg, Paramotopy: parallel parameter homotopy via Bertini, available at http://www.paramotopy.com.Google Scholar
  60. [60]
    D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler, Bertini: software for numerical algebraic geometry, available at http://dx.doi.org/10.7274/r0h41pb5.Google Scholar
  61. [61]
    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A note on the magnitude of the flux superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  64. [64]
    N. Arkani-Hamed, M. Dine and S.P. Martin, Dynamical supersymmetry breaking in models with a Green-Schwarz mechanism, Phys. Lett. B 431 (1998) 329 [hep-ph/9803432] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α -corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  69. [69]
    L. Anguelova, C. Quigley and S. Sethi, The leading quantum corrections to stringy Kähler potentials, JHEP 10 (2010) 065 [arXiv:1007.4793] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  70. [70]
    T.W. Grimm, D. Klevers and M. Poretschkin, Fluxes and warping for gauge couplings in F-theory, JHEP 01 (2013) 023 [arXiv:1202.0285] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    I. Garcia-Etxebarria, H. Hayashi, R. Savelli and G. Shiu, On quantum corrected Kähler potentials in F-theory, JHEP 03 (2013) 005 [arXiv:1212.4831] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  72. [72]
    T.W. Grimm, R. Savelli and M. Weissenbacher, On α corrections in N = 1 F-theory compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    J. Halverson, H. Jockers, J.M. Lapan and D.R. Morrison, Perturbative corrections to Kähler moduli spaces, arXiv:1308.2157 [INSPIRE].
  74. [74]
    M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    J.P. Conlon and F. Quevedo, Gaugino and scalar masses in the landscape, JHEP 06 (2006) 029 [hep-th/0605141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    J.P. Conlon, S.S. Abdussalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].ADSGoogle Scholar
  81. [81]
    B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    S.P. de Alwis, Constraints on LVS compactifications of IIB string theory, JHEP 05 (2012) 026 [arXiv:1202.1546] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.R. Bond, L. Kofman, S. Prokushkin and P.M. Vaudrevange, Roulette inflation with Kähler moduli and their axions, Phys. Rev. D 75 (2007) 123511 [hep-th/0612197] [INSPIRE].ADSGoogle Scholar
  88. [88]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Cicoli, F.G. Pedro and G. Tasinato, Poly-instanton inflation, JCAP 12 (2011) 022 [arXiv:1110.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  91. [91]
    M. Mariño, Chern-Simons theory and topological strings, Rev. Mod. Phys. 77 (2005) 675 [hep-th/0406005] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    M. Vonk, A mini-course on topological strings, hep-th/0504147 [INSPIRE].
  93. [93]
    D. Klevers, Holomorphic couplings in non-perturbative string compactifications, Fortschr. Phys. 60 (2012) 3 [arXiv:1106.6259] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  94. [94]
    K. Hori et al., Mirror symmetry, Clay Mathematics Monographs, AMS, Providence U.S.A. (2003) [INSPIRE].
  95. [95]
    P.A. Griffiths, On the periods of certain rational integrals: I, Annals Math. 90 (1969) 460.MathSciNetMATHCrossRefGoogle Scholar
  96. [96]
    P.A. Griffiths, On the periods of certain rational integrals: II, Annals Math. 90 (1969) 496.MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].MathSciNetMATHGoogle Scholar
  98. [98]
    P.A. Griffiths, Periods of integrals on algebraic manifolds, I, Am. J. Math. 90 (1968) 568.MATHCrossRefGoogle Scholar
  99. [99]
    P.A. Griffiths, Periods of integrals on algebraic manifolds, II, Am. J. Math. 90 (1968) 805.MATHCrossRefGoogle Scholar
  100. [100]
    P.A. Griffiths, Periods of integrals on algebraic manifolds, III, Publ. Math. 38 (1970) 125.MATHCrossRefGoogle Scholar
  101. [101]
    P.A. Griffiths, Periods of integrals on algebraic manifolds: summary of main results and discussion of open problems, B. Am. Math. Soc. 76 (1970) 228.MathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    I. Gelfand, M. Kapranov and A. Zelevinsky, Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989) 524.MathSciNetGoogle Scholar
  103. [103]
    I. Gelfand, M. Kapranov and A. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990) 255.MathSciNetMATHCrossRefGoogle Scholar
  104. [104]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  105. [105]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B 433 (1995) 501 [hep-th/9406055] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  106. [106]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  107. [107]
    M.-x. Huang, A. Klemm and S. Quackenbush, Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Lect. Notes Phys. 757 (2009) 45 [hep-th/0612125] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  108. [108]
    W. Fulton, Intersection theory, Springer, Berlin Germany (1998).MATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Michele Cicoli
    • 1
    • 2
    • 3
  • Denis Klevers
    • 4
  • Sven Krippendorf
    • 5
  • Christoph Mayrhofer
    • 6
  • Fernando Quevedo
    • 3
    • 7
  • Roberto Valandro
    • 3
    • 8
  1. 1.Dipartimento di Fisica e AstronomiaUniversità di BolognaBolognaItaly
  2. 2.INFN, Sezione di BolognaBolognaItaly
  3. 3.ICTPTriesteItaly
  4. 4.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A
  5. 5.Bethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnBonnGermany
  6. 6.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany
  7. 7.DAMTPUniversity of CambridgeCambridgeU.K
  8. 8.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations