Advertisement

Perturbative calculation of the clover term for Wilson fermions in any representation of the gauge group SU(N)

  • S. Musberg
  • G. Münster
  • S. Piemonte
Article

Abstract

We calculate the Sheikholeslami-Wohlert coefficient of the O(a) improvement-term for Wilson fermions in any representation of the gauge group SU(N) perturbatively at the one-loop level. The result applies to QCD with adjoint quarks and to \( \mathcal{N} \) = 1 supersymmetric Yang-Mills theory on the lattice.

Keywords

Supersymmetric gauge theory Lattice Gauge Field Theories 

References

  1. [1]
    J. Giedt, Lattice gauge theory and physics beyond the standard model, PoS (Lattice 2012) 006.
  2. [2]
    K. Demmouche et al., Simulation of 4d \( \mathcal{N} \) = 1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing, Eur. Phys. J. C 69 (2010) 147 [arXiv:1003.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bergner et al., The gluino-glue particle and finite size effects in supersymmetric Yang-Mills theory, JHEP 09 (2012) 108 [arXiv:1206.2341] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Bergner, I. Montvay, G. Münster, U.D. Özugurel and D. Sandbrink, Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory, arXiv:1304.2168 [INSPIRE].
  5. [5]
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles and φ 4 Theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear σ-model in Perturbation Theory, Nucl. Phys. B 226 (1983) 205 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Wohlert, Improved continuum limit lattice action for quarks, DESY preprint 87–069 (1987), unpublished.Google Scholar
  9. [9]
    S. Naik, O(a) perturbative improvement for Wilson fermions, Phys. Lett. B 311 (1993) 230 [hep-lat/9304013] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Lüscher and P. Weisz, O(a) improvement of the axial current in lattice QCD to one loop order of perturbation theory, Nucl. Phys. B 479 (1996) 429 [hep-lat/9606016] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Aoki and Y. Kuramashi, Determination of the improvement coefficient c SW up to one loop order with the conventional perturbation theory, Phys. Rev. D 68 (2003) 094019 [hep-lat/0306015] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Nonperturbative O(a) improvement of lattice QCD, Nucl. Phys. B 491 (1997) 323 [hep-lat/9609035] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Edwards, U.M. Heller and T.R. Klassen, The effectiveness of nonperturbative O(a) improvement in lattice QCD, Phys. Rev. Lett. 80 (1998) 3448 [hep-lat/9711052] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Karavirta, K. Tuominen, A. Mykkanen, J. Rantaharju and K. Rummukainen, Non-perturbatively improved clover action for SU(2) gauge + fundamental and adjoint representation fermions, PoS(Lattice 2010) 064 [arXiv:1011.1781] [INSPIRE].
  15. [15]
    T. van Ritbergen, A. Schellekens and J. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L. Del Debbio, A. Patella and C. Pica, Higher representations on the lattice: Numerical simulations SU(2) with adjoint fermions, Phys. Rev. D 81 (2010) 094503 [arXiv:0805.2058] [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Montvay, An algorithm for gluinos on the lattice, Nucl. Phys. B 466 (1996) 259 [hep-lat/9510042] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Donini, M. Guagnelli, P. Hernández and A. Vladikas, Towards N = 1 super Yang-Mills on the lattice, Nucl. Phys. B 523 (1998) 529 [hep-lat/9710065] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Universität Münster, Institut für Theoretische PhysikMünsterGermany

Personalised recommendations