Advertisement

Statistical entropy of a BTZ black hole from loop quantum gravity

  • Ernesto Frodden
  • Marc GeillerEmail author
  • Karim Noui
  • Alejandro Perez
Open Access
Article

Abstract

We compute the statistical entropy of a BTZ black hole in the context of three-dimensional Euclidean loop quantum gravity with a cosmological constant Λ. As in the four-dimensional case, a quantum state of the black hole is characterized by a spin network state. Now however, the underlying colored graph Γ lives in a two-dimensional spacelike surface Σ, and some of its links cross the black hole horizon, which is viewed as a circular boundary of Σ. Each link crossing the horizon is colored by a spin j (at the kinematical level), and the length L of the horizon is given by the sum L = ∑ L of the fundamental length contributions L carried by the spins j of the links . We propose an estimation for the number \( N_{\varGamma}^{\mathrm{BTZ}}\left( {L,\Lambda} \right) \) of the Euclidean BTZ black hole microstates (defined on a fixed graph Γ) based on an analytic continuation from the case Λ > 0 to the case Λ < 0. In our model, we show that \( N_{\varGamma}^{\mathrm{BTZ}}\left( {L,\Lambda} \right) \) reproduces the Bekenstein-Hawking entropy in the classical limit. This asymptotic behavior is independent of the choice of the graph Γ provided that the condition L = ∑ L is satisfied, as it should be in three-dimensional quantum gravity.

Keywords

Quantum Groups Models of Quantum Gravity Black Holes 

References

  1. [1]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    S. Carlip, Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    D. Birmingham, I. Sachs and S. Sen, Entropy of three-dimensional black holes in string theory, Phys. Lett. B 424 (1998) 275 [hep-th/9801019] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  8. [8]
    E.J. Martinec, Conformal field theory, geometry and entropy, hep-th/9809021 [INSPIRE].
  9. [9]
    Y.-j. Chen, Quantum Liouville theory and BTZ black hole entropy, Class. Quant. Grav. 21 (2004) 1153 [hep-th/0310234] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    E. Buffenoir, K. Noui and P. Roche, Hamiltonian quantization of Chern-Simons theory with SL(2, \( \mathbb{C} \)) group, Class. Quant. Grav. 19 (2002) 4953 [hep-th/0202121] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    S. Carlip, The statistical mechanics of the three-dimensional Euclidean black hole, Phys. Rev. D 55 (1997) 878 [gr-qc/9606043] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory I, Commun. Math. Phys. 172 (1995) 317 [hep-th/9403066] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. [15]
    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantization of the Hamiltonian Chern-Simons theory II, Commun. Math. Phys. 174 (1995) 561 [hep-th/9408097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Perez and D. Pranzetti, On the regularization of the constraints algebra of quantum gravity in 2+1 dimensions with non-vanishing cosmological constant, Class. Quant. Grav. 27 (2010) 145009 [arXiv:1001.3292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Pranzetti, 2+1 gravity with positive cosmological constant in LQG: a proposal for the physical state, Class. Quant. Grav. 28 (2011) 225025 [arXiv:1101.5585] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Noui, A. Perez and D. Pranzetti, Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity, JHEP 10 (2011) 036 [arXiv:1105.0439] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    K. Noui, A. Perez and D. Pranzetti, Non-commutative holonomies in 2+1 LQG and Kauffmans brackets, J. Phys. Conf. Ser. 360 (2012) 012040 [arXiv:1112.1825] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Sahlmann and T. Thiemann, Chern-Simons expectation values and quantum horizons from LQG and the Duflo map, Phys. Rev. Lett. 108 (2012) 111303 [arXiv:1109.5793] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) black hole entropy revisited, JHEP 05 (2011) 016 [arXiv:1103.2723] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Ashtekar, J. Wisniewski and O. Dreyer, Isolated horizons in (2+1) gravity, Adv. Theor. Math. Phys. 6 (2002) 507 [gr-qc/0206024] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  23. [23]
    L. Freidel, E.R. Livine and C. Rovelli, Spectra of length and area in (2+1) Lorentzian loop quantum gravity, Class. Quant. Grav. 20 (2003) 1463 [gr-qc/0212077] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    K. Noui and A. Perez, Three-dimensional loop quantum gravity: physical scalar product and spin foam models, Class. Quant. Grav. 22 (2005) 1739 [gr-qc/0402110] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    C. Meusburger and K. Noui, Combinatorial quantisation of the Euclidean torus universe, Nucl. Phys. B 841 (2010) 463 [arXiv:1007.4615] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C. Meusburger and K. Noui, The Hilbert space of 3d gravity: quantum group symmetries and observables, Adv. Theor. Math. Phys. 14 (2010) 1651 [arXiv:0809.2875] [INSPIRE].MathSciNetGoogle Scholar
  27. [27]
    V.G. Turaev and O.Y. Viro, State sum invariants of 3-manifolds and quantum 6j-symbols, Topology 31 (1992) 865.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    E. Frodden, M. Geiller, K. Noui and A. Perez, Black hole entropy from complex Ashtekar variables, arXiv:1212.4060 [INSPIRE].
  29. [29]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Carlip, Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17 (2000) 4175 [gr-qc/0005017] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. [31]
    T.R. Govindarajan, R.K. Kaul and V. Suneeta, Logarithmic correction to the Bekenstein-Hawking entropy of the BTZ black hole, Class. Quant. Grav. 18 (2001) 2877 [gr-qc/0104010] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. [32]
    E. Frodden and A. Perez, Angular momentum in loop quantum gravity black holes, to appear.Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Ernesto Frodden
    • 1
  • Marc Geiller
    • 2
    Email author
  • Karim Noui
    • 2
    • 3
  • Alejandro Perez
    • 1
  1. 1.Centre de Physique ThéoriqueMarseilleFrance
  2. 2.Laboratoire APC — Astroparticule et CosmologieUniversité Paris Diderot Paris 7ParisFrance
  3. 3.Laboratoire de Mathématique et Physique ThéoriqueToursFrance

Personalised recommendations