Advertisement

Thermalization of causal holographic information

  • Veronika E. Hubeny
  • Mukund Rangamani
  • Erik Tonni
Article

Abstract

We study causal wedges associated with a given sub-region in the boundary of asymptotically AdS spacetimes. Part of our motivation is to better understand the recently proposed holographic observable, causal holographic information, χ, which is given by the area of a bulk co-dimension two surface lying on the boundary of the causal wedge. It has been suggested that χ captures the basic amount of information contained in the reduced density matrix about the bulk geometry. To explore its properties further we examine its behaviour in time-dependent situations. As a simple model we focus on null dust collapse in an asymptotically AdS spacetime, modeled by the Vaidya-AdS geometry. We argue that while χ is generically quasi-telelogical in time-dependent backgrounds, for suitable choice of sub-regions in conformal field theories, the temporal evolution of χ is entirely causal. We comment on the implications of this observation and more generally on features of causal constructions and contrast our results with the behaviour of holographic entanglement entropy. Along the way we also derive the rate of early time growth and late time saturation (to the thermal value) of both χ and entanglement entropy in these backgrounds.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes 

References

  1. [1]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].ADSGoogle Scholar
  2. [2]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local CFT operators and AdS/CFT for subregions, arXiv:1209.4641 [INSPIRE].
  5. [5]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].
  13. [13]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011)191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  25. [25]
    V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum quenches in the transverse field Ising chain: II. Stationary state properties, J. Stat. Mech. 07 (2012) P07022 [arXiv:1205.2211].CrossRefGoogle Scholar
  27. [27]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 04 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  28. [28]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. 06 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. 10 (2007) P10004 [arXiv:0708.3750].CrossRefGoogle Scholar
  31. [31]
    S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. 11 (2008) P11003 [arXiv:0808.0116].CrossRefGoogle Scholar
  32. [32]
    Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-Abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically anti-de Sitter spacetime for plasma thermalizationan ADM formulation, Phys. Rev. D 85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP 08 (2012) 049 [arXiv:1206.6785] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Bhaseen, J.P. Gauntlett, B. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Taliotis, Extra dimensions, black holes and fireballs at the LHC, JHEP 05 (2013) 034 [arXiv:1212.0528] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    V.E. Hubeny, M. Rangamani and E. Tonni, Global properties of causal wedges in asymptotically AdS spacetimes, to appear.Google Scholar
  46. [46]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, work in progress.Google Scholar
  48. [48]
    V.E. Hubeny, Precursors see inside black holes, Int. J. Mod. Phys. D 12 (2003) 1693 [hep-th/0208047] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Veronika E. Hubeny
    • 1
  • Mukund Rangamani
    • 1
  • Erik Tonni
    • 2
  1. 1.Centre for Particle Theory & Department of Mathematical SciencesScience LaboratoriesDurhamU.K.
  2. 2.SISSA and INFNTriesteItaly

Personalised recommendations