Advertisement

Auxiliary superfields in \( \mathcal{N} \) = 1 supersymmetric self-dual electrodynamics

  • Evgeny Ivanov
  • Olaf LechtenfeldEmail author
  • Boris Zupnik
Article

Abstract

We construct the general formulation of \( \mathcal{N} \) = 1 supersymmetric self-dual abelian gauge theory involving auxiliary chiral spinor superfields. Self-duality in this context is just U(N ) invariance of the nonlinear interaction of the auxiliary superfields. Focusing on the U(1) case, we present the most general form of the U(1) invariant auxiliary interaction, consider a few instructive examples and show how to generate self-dual \( \mathcal{N} \) =1 models with higher derivatives in this approach.

Keywords

Supersymmetry and Duality Supersymmetric gauge theory Duality in Gauge Field Theories 

References

  1. [1]
    M.K. Gaillard and B. Zumino, Duality Rotations for Interacting Fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    M.K. Gaillard and B. Zumino, Nonlinear electromagnetic selfduality and Legendre transformations, in Duality and Supersymmetric Theories, D.I. Olive and P.C. West eds., Cambridge University Press (1999) pg. 33 [hep-th/9712103] [INSPIRE].
  3. [3]
    G. Gibbons and D. Rasheed, Electric-magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P. Aschieri, D. Brace, B. Morariu and B. Zumino, Nonlinear selfduality in even dimensions, Nucl. Phys. B 574 (2000) 551 [hep-th/9909021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    P. Aschieri, D. Brace, B. Morariu and B. Zumino, Proof of a symmetrized trace conjecture for the Abelian Born-Infeld Lagrangian, Nucl. Phys. B 588 (2000) 521 [hep-th/0003228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S.M. Kuzenko and S. Theisen, Supersymmetric duality rotations, JHEP 03 (2000) 034 [hep-th/0001068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, Fortsch. Phys. 49 (2001) 273 [hep-th/0007231] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    P. Aschieri, S. Ferrara and B. Zumino, Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity, Riv. Nuovo Cim. 31 (2008) 625 [arXiv:0807.4039] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Bossard, C. Hillmann and H. Nicolai, E 7(7) symmetry in perturbatively quantised \( \mathcal{N} \) = 8 supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Kallosh, E 7(7) Symmetry and Finiteness of N = 8 Supergravity, JHEP 03 (2012) 083 [arXiv:1103.4115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R. Kallosh, N=8 Counterterms and E 7(7) Current Conservation, JHEP 06 (2011) 073 [arXiv:1104.5480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Bossard and H. Nicolai, Counterterms vs. Dualities, JHEP 08 (2011) 074 [arXiv:1105.1273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E. Ivanov and B. Zupnik, N=3 supersymmetric Born-Infeld theory, Nucl. Phys. B 618 (2001) 3 [hep-th/0110074] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. Ivanov and B. Zupnik, New approach to nonlinear electrodynamics: Dualities as symmetries of interaction, Yader. Fiz. 67 (2004) 2212 [Phys. Atom. Nucl. 67 (2004) 2188] [hep-th/0303192] [INSPIRE].MathSciNetGoogle Scholar
  18. [18]
    E. Ivanov and B. Zupnik, New representation for Lagrangians of selfdual nonlinear electrodynamics, Proc. of XVI Max Born Symposium Supersymmetries and quantum symmetries, E. Ivanov, S. Krivonos, J. Lukierski and A. Pashnev eds., Dubna (2002) pg. 235 [hep-th/0202203] [INSPIRE].
  19. [19]
    E.A. Ivanov, B.M. Zupnik, a work in preparation.Google Scholar
  20. [20]
    E. Ivanov and B. Zupnik, Bispinor Auxiliary Fields in Duality-Invariant Electrodynamics Revisited, Phys. Rev. D 87 (2013) 065023 [arXiv:1212.6637] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J.J.M. Carrasco, R. Kallosh and R. Roiban, Covariant procedures for perturbative non-linear deformation of duality-invariant theories, Phys. Rev. D 85 (2012) 025007 [arXiv:1108.4390] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W. Chemissany, R. Kallosh and T. Ortín, Born-Infeld with Higher Derivatives, Phys. Rev. D 85 (2012) 046002 [arXiv:1112.0332] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S.M. Kuzenko, Duality rotations in supersymmetric nonlinear electrodynamics revisited, JHEP 03 (2013) 153 [arXiv:1301.5194] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Wess, J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, New Jersey (1983).zbMATHGoogle Scholar
  25. [25]
    S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia
  2. 2.Institut für Theoretische Physik and Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations