Advertisement

Triality, periodicity and stability of SO(8) gauged supergravity

  • Andrea Borghese
  • Adolfo GuarinoEmail author
  • Diederik Roest
Article

Abstract

While electromagnetic duality is a symmetry of many supergravity theories, this is not the case for the \( \mathcal{N} \) = 8 gauged theory. It was recently shown that this rotation leads to a one-parameter family of SO(8) supergravities. It is an open question what the period of this parameter is. This issue is investigated in the SO(4) invariant sectors of the theory. We classify such critical points and find a novel branch of non-supersymmetric and unstable solutions, whose embedding is related via triality to the two known ones. Secondly, we show that the three branches of solutions lead to a π/4 periodicity of the vacuum structure. The general interrelations between triality and periodicity are discussed. Finally, we comment on the connection to other gauge groups as well as the possibility to achieve (non-)perturbative stability around AdS/Mkw/dS transitions.

Keywords

Supersymmetry and Duality Extended Supersymmetry Supergravity Models 

References

  1. [1]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B. de Wit and H. Nicolai, The consistency of the S7 truncation in D = 11 supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Borghese, A. Guarino and D. Roest, All G2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varelad, The SU(3)-invariant sector of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N.P. Warner, Some New Extrema Of The Scalar Potential Of Gauged N = 8 Supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    N.P. Warner, Some Properties Of The Scalar Potential In Gauged Supergravity Theories, Nucl. Phys. B 231 (1984) 250 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T. Fischbacher, K. Pilch and N.P. Warner, New Supersymmetric and Stable, Non-Supersymmetric Phases in Supergravity and Holographic Field Theory, arXiv:1010.4910 [INSPIRE].
  12. [12]
    G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    T. Fischbacher, The Encyclopedic Reference of Critical Points for SO(8)-Gauged N = 8 Supergravity. Part 1: Cosmological Constants in the Range −Λ/g2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE].
  14. [14]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Kodama and M. Nozawa, Classification and stability of vacua in maximal gauged supergravity, JHEP 01 (2013) 045 [arXiv:1210.4238] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional flux compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 supergravity with local scaling symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    G. Dall’Agata and F. Zwirner, Quantum corrections to broken N = 8 supergravity, JHEP 09 (2012) 078 [arXiv:1205.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Aldazabal, P.G. Camara and J. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. de Wit and H. Nicolai, Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions, arXiv:1302.6219 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Andrea Borghese
    • 1
  • Adolfo Guarino
    • 2
    Email author
  • Diederik Roest
    • 1
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsBern UniversityBernSwitzerland

Personalised recommendations