Prospects and blind spots for neutralino dark matter

  • Clifford Cheung
  • Lawrence J. Hall
  • David PinnerEmail author
  • Joshua T. Ruderman


Using a simplified model framework, we assess observational limits and discovery prospects for neutralino dark matter, taken here to be a general admixture of bino, wino, and Higgsino. Experimental constraints can be weakened or even nullified in regions of parameter space near 1) purity limits, where the dark matter is mostly bino, wino, or Higgsino, or 2) blind spots, where the relevant couplings of dark matter to the Z or Higgs bosons vanish identically. We analytically identify all blind spots relevant to spin-independent and spin-dependent scattering and show that they arise for diverse choices of relative signs among M 1, M 2, and μ. At present, XENON100 and IceCube still permit large swaths of viable parameter space, including the well-tempered neutralino. On the other hand, upcoming experiments should have sufficient reach to discover dark matter in much of the remaining parameter space. Our results are broadly applicable, and account for a variety of thermal and non-thermal cosmological histories, including scenarios in which neutralinos are just a component of the observed dark matter today. Because this analysis is indifferent to the fine-tuning of electroweak symmetry breaking, our findings also hold for many models of neutralino dark matter in the MSSM, NMSSM, and Split Supersymmetry. We have identified parameter regions at low tan β which sit in a double blind spot for both spin-independent and spin-dependent scattering. Interestingly, these low tan β regions are independently favored in the NMSSM and models of Split Supersymmetry which accommodate a Higgs mass near 125 GeV.


Supersymmetry Phenomenology 


  1. [1]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    IceCube collaboration, M. Aartsen et al., Search for dark matter annihilations in the sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].
  4. [4]
    LUX collaboration, D. Akerib et al., Technical results from the surface run of the LUX dark matter experiment, arXiv:1210.4569 [INSPIRE].
  5. [5]
    P. Cushman, SuperCDMS: progress and future directions, in Identification of dark matter,Three Cryogenic Dark Matter Search Status and Future Plans”, Chicago U.S.A. July 2012.Google Scholar
  6. [6]
    XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, arXiv:1301.6620 [INSPIRE].
  7. [7]
    R. Lang, private communication.Google Scholar
  8. [8]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Birkedal-Hansen and B.D. Nelson, The role of wino content in neutralino dark matter, Phys. Rev. D 64 (2001) 015008 [hep-ph/0102075] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Birkedal-Hansen and B.D. Nelson, Relic neutralino densities and detection rates with nonuniversal gaugino masses, Phys. Rev. D 67 (2003) 095006 [hep-ph/0211071] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Baer, A. Mustafayev, E.-K. Park and S. Profumo, Mixed wino dark matter: consequences for direct, indirect and collider detection, JHEP 07 (2005) 046 [hep-ph/0505227] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Baer et al., Exploring the BWCA (bino-wino co-annihilation) scenario for neutralino dark matter, JHEP 12 (2005) 011 [hep-ph/0511034] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of neutralino dark matter, arXiv:1207.4434 [INSPIRE].
  17. [17]
    M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and lambda-SUSY, arXiv:1208.0833 [INSPIRE].
  18. [18]
    V. Mandic, A. Pierce, P. Gondolo and H. Murayama, The lower bound on the neutralino nucleon cross-section, hep-ph/0008022 [INSPIRE].
  19. [19]
    S. Gori, P. Schwaller and C.E. Wagner, Search for Higgs bosons in SUSY cascade decays and neutralino dark matter, Phys. Rev. D 83 (2011) 115022 [arXiv:1103.4138] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Bélanger, E. Nezri and A. Pukhov, Discriminating dark matter candidates using direct detection, Phys. Rev. D 79 (2009) 015008 [arXiv:0810.1362] [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Cohen, D.J. Phalen and A. Pierce, On the correlation between the spin-independent and spin-dependent direct detection of dark matter, Phys. Rev. D 81 (2010) 116001 [arXiv:1001.3408] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Bovy and S. Tremaine, On the local dark matter density, Astrophys. J. 756 (2012) 89 [arXiv:1205.4033] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
  26. [26]
    G. Tarlé, PandaX, a LXe dark matter detector at the Jinping Underground Lab, in UCLA Dark Matter 2012, Los Angeles U.S.A. February 2012.Google Scholar
  27. [27]
    DarkSide collaboration, A. Wright, The DarkSide program at LNGS, arXiv:1109.2979 [INSPIRE].
  28. [28]
    G. Wikstrom and J. Edsjo, Limits on the WIMP-nucleon scattering cross-section from neutrino telescopes, JCAP 04 (2009) 009 [arXiv:0903.2986] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of milky way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Fermi-LAT collaboration, A. Drlica-Wagner, Searching for dark matter in dwarf spheroidal satellite galaxies with the Fermi-LAT, in 4th Fermi Symposium, U.S.A. November 2012.Google Scholar
  32. [32]
    PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    LEP2 SUSY Working Group , ALEPH, DELPHI, L3 and OPAL experiments webpage,
  34. [34]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2012-154, CERN, Geneva Switzerland (2012).
  35. [35]
    CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at \( \sqrt{s}=8 \) TeV,
  36. [36]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE]. ADSCrossRefGoogle Scholar
  38. [38]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].
  42. [42]
    A. Pierce, Dark matter in the finely tuned minimal supersymmetric Standard Model, Phys. Rev. D 70 (2004) 075006 [hep-ph/0406144] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  44. [44]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  48. [48]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
  49. [49]
    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-doublet dark matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Cheung and Y. Nomura, Higgs descendants, Phys. Rev. D 86 (2012) 015004 [arXiv:1112.3043] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G. Gounaris, C. Le Mouel and P. Porfyriadis, A description of the neutralino observables in terms of projectors, Phys. Rev. D 65 (2002) 035002 [hep-ph/0107249] [INSPIRE].ADSGoogle Scholar
  52. [52]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    J. Kozaczuk, S. Profumo and C.L. Wainwright, Accidental supersymmetric dark matter and baryogenesis, JCAP 01 (2013) 027 [arXiv:1208.5166] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    H. Silverwood et al., Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25, JCAP 03 (2013) 027 [arXiv:1210.0844] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].ADSGoogle Scholar
  57. [57]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J.L. Feng and D. Sanford, Heart of darkness: the significance of the zeptobarn scale for neutralino direct detection, JCAP 05 (2011) 018 [arXiv:1009.3934] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Hisano, K. Ishiwata and N. Nagata, Direct detection of dark matter degenerate with colored particles in mass, Phys. Lett. B 706 (2011) 208 [arXiv:1110.3719] [INSPIRE].ADSGoogle Scholar
  61. [61]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
  64. [64]
    W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSGoogle Scholar
  65. [65]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10–100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  68. [68]
    G. Bélanger, C. Boehm, M. Cirelli, J. Da Silva and A. Pukhov, PAMELA and Fermi-LAT limits on the neutralino-chargino mass degeneracy, JCAP 11 (2012) 028 [arXiv:1208.5009] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R. Mahbubani and L. Senatore, The minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].ADSGoogle Scholar
  71. [71]
    R. Essig, Direct detection of non-chiral dark matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [INSPIRE].ADSGoogle Scholar
  72. [72]
    G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally selected WIMP dark matter with high-scale supersymmetry breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].ADSGoogle Scholar
  73. [73]
    C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  75. [75]
    MILC collaboration, W. Freeman and D. Toussaint, The intrinsic strangeness and charm of the nucleon using improved staggered fermions, arXiv:1204.3866 [INSPIRE].
  76. [76]
    P. Shanahan, A. Thomas and R. Young, Sigma terms from an SU(3) chiral extrapolation, Phys. Rev. D 87 (2013) 074503 [arXiv:1205.5365] [INSPIRE].ADSGoogle Scholar
  77. [77]
    JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f = 2 + 1 lattice QCD with exact chiral symmetry, arXiv:1208.4185 [INSPIRE].
  78. [78]
    M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev. D 86 (2012) 114510 [arXiv:1210.0025] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J. Alarcon, J. Martin Camalich and J. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  80. [80]
    J. Alarcon, L. Geng, J.M. Camalich and J. Oller, On the strangeness content of the nucleon, arXiv:1209.2870 [INSPIRE].
  81. [81]
    J. Stahov, H. Clement and G. Wagner, Evaluation of the pion-nucleon sigma term from CHAOS data, arXiv:1211.1148 [INSPIRE].
  82. [82]
    M. Perelstein and B. Shakya, Fine-tuning implications of direct dark matter searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Clifford Cheung
    • 1
  • Lawrence J. Hall
    • 2
  • David Pinner
    • 2
    Email author
  • Joshua T. Ruderman
    • 2
  1. 1.California Institute of TechnologyPasadenaU.S.A.
  2. 2.Berkeley Center for Theoretical PhysicsUniversity of California and Theoretical Physics Group, Lawrence Berkeley National LabBerkeleyU.S.A.

Personalised recommendations