Advertisement

Baryon asymmetry and dark matter through the vector-like portal

  • Pavel Fileviez Pérez
  • Mark B. Wise
Article

Abstract

A possible connection between the cosmological baryon asymmetry, dark matter and vector-like fermions is investigated. In this scenario an asymmetry generated through baryogenesis or leptogenesis (in the vector-like matter sector) connects the baryon asymmetry to the dark matter density. We present explicit renormalizable models where this connection occurs. These models have asymmetric dark matter and a significant invisible Higgs decay width to dark matter particles is possible. We refer to this type of scenario as the vector-like portal. In some asymmetric dark matter models there are potential naturalness issues for the low energy effective theory. We address that issue in themodels we consider by starting with a Lagrangian that is the most general renormalizable one consistent with the gauge (and discrete) symmetries and showing the low energy effective theory automatically has the required form as a consequence of the symmetries of the full theory. We show that the mass of the dark matter candidate is predicted in these scenarios.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].ADSGoogle Scholar
  4. [4]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6607 [hep-ph/9505385] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the ΩbDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Cosme, L. Lopez Honorez and M.H.G. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [INSPIRE].ADSGoogle Scholar
  8. [8]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].ADSGoogle Scholar
  12. [12]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W.-Z. Feng, P. Nath and G. Peim, Cosmic coincidence and asymmetric dark matter in a Stueckelberg extension, Phys. Rev. D 85 (2012) 115016 [arXiv:1204.5752] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N.F. Bell, K. Petraki, I.M. Shoemaker and R.R. Volkas, Pangenesis in a baryon-symmetric universe: dark and visible matter via the Affleck-Dine mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Cheung and K.M. Zurek, Affleck-Dine cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Unwin, Exodus: hidden origin of dark matter and baryons, arXiv:1212.1425 [INSPIRE].
  20. [20]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E.J. Chun, Minimal dark matter and leptogenesis, JHEP 03 (2011) 098 [arXiv:1102.3455] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Arina, R.N. Mohapatra and N. Sahu, Co-genesis of matter and dark matter with vector-like fourth generation leptons, Phys. Lett. B 720 (2013) 130 [arXiv:1211.0435] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Cui, L. Randall and B. Shuve, Emergent dark matter, baryon and lepton numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L.A. Anchordoqui, H. Goldberg and G. Steigman, Right-handed neutrinos as the dark radiation: status and forecasts for the LHC, Phys. Lett. B 718 (2013) 1162 [arXiv:1211.0186] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ATLAS collaboration, Search for new phenomena in \( t\overline{t} \) events with large missing transverse momentum in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, Search for anomalous missing E T in \( t\overline{t} \) events, ATLAS-CONF-2011-036 (2011) [INSPIRE].
  27. [27]
    J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D 42 (1990) 3344 [INSPIRE].ADSGoogle Scholar
  28. [28]
    H. Iminniyaz, M. Drees and X. Chen, Relic abundance of asymmetric dark matter, JCAP 07 (2011) 003 [arXiv:1104.5548] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.L. Graesser, I.M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  31. [31]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Angloher et al., Limits on WIMP dark matter using sapphire cryogenic detectors, Astropart. Phys. 18 (2002) 43 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K.S. Babu and R.N. Mohapatra, Coupling unification, GUT-scale baryogenesis and neutron-antineutron oscillation in SO(10), Phys. Lett. B 715 (2012) 328 [arXiv:1206.5701] [INSPIRE].Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Particle and Astro-Particle Physics Division, Max-Planck Institute for Nuclear Physics (MPIK)HeidelbergGermany
  2. 2.California Institute of TechnologyPasadenaU.S.A

Personalised recommendations