Advertisement

Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events

  • Ross DienerEmail author
  • C. P. Burgess
Article

Abstract

To solve the hierarchy problem, extra-dimensional models must explain why the new dimensions stabilize to the right size, and the known mechanisms for doing so require bulk scalars that couple to the branes. Because of these couplings the energetics of dimensional stabilization competes with the energetics of the Higgs vacuum, with potentially observable effects. These effects are particularly strong for one or two extra dimensions because the bulk-Higgs couplings can then be super-renormalizable or dimensionless. Experimental reach for such extra-dimensional Higgs ‘portals’ are stronger than for gravitational couplings because they are less suppressed at low-energies. We compute how Higgs-bulk coupling through such a portal with two extra dimensions back-reacts onto properties of the Higgs boson. When the KK mass is smaller than the Higgs mass, mixing with KK modes results in an invisible Higgs decay width, missing-energy signals at high-energy colliders, and new mechanisms of energy loss in stars and supernovae. Astrophysical bounds turn out to be complementary to collider measurements, with observable LHC signals allowed by existing constraints. We comment on the changes to the Higgs mass-coupling relationship caused by Higgs-bulk mixing, and how the resulting modifications to the running of Higgs couplings alter vacuum-stability and triviality bounds.

Keywords

Phenomenology of Field Theories in Higher Dimensions Strings and branes phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  4. [4]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  6. [6]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  7. [7]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  8. [8]
    E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Burgess, J. Matias and F. Quevedo, MSLED: a minimal supersymmetric large extra dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Matias and C. Burgess, MSLED, neutrino oscillations and the cosmological constant, JHEP 09 (2005) 052 [hep-ph/0508156] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Ivanov and A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    E. Ivanov and A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSGoogle Scholar
  19. [19]
    S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Bagger and J. Wess, Partial breaking of extended supersymmetry, Phys. Lett. B 138 (1984) 105 [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Hughes and J. Polchinski, Partially broken global supersymmetry and the superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSGoogle Scholar
  25. [25]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Coradeschi, S. De Curtis, D. Dominici and J.R. Pelaez, Modified spontaneous symmetry breaking pattern by brane-bulk interaction terms, JHEP 04 (2008) 048 [arXiv:0712.0537] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Dominici and J.F. Gunion, Invisible Higgs decays from Higgs graviscalar mixing, Phys. Rev. D 80 (2009) 115006 [arXiv:0902.1512] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Dudas, C. Papineau and V. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    C. Burgess, C. de Rham and L. van Nierop, The hierarchy problem and the self-localized Higgs, JHEP 08 (2008) 061 [arXiv:0802.4221] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Beauchemin, G. Azuelos and C. Burgess, Dimensionless coupling of bulk scalars at the LHC, J. Phys. G 30 (2004) N17 [hep-ph/0407196] [INSPIRE].Google Scholar
  32. [32]
    G. Azuelos, P. Beauchemin and C. Burgess, Phenomenological constraints on extra dimensional scalars, J. Phys. G 31 (2005) 1 [hep-ph/0401125] [INSPIRE].ADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    K. Lanczos, Bemerkung zur de Sitterschen Welt (in German), Phys. Z. 23 (1922) 239.Google Scholar
  37. [37]
    K. Lanczos, Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie (in German), Ann. Phys. 379 (1924) 518.CrossRefGoogle Scholar
  38. [38]
    C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571.MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuov. Cim. B 44 (1966) 1 [Erratum ibid. B 48 (1967) 463].ADSGoogle Scholar
  40. [40]
    C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Kobayashi, UV caps, IR modification of gravity and recovery of 4D gravity in regularized braneworlds, Phys. Rev. D 78 (2008) 084018 [arXiv:0806.0924] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    C. de Rham, Classical renormalization of codimension-two brane couplings, AIP Conf. Proc. 957 (2007) 309 [arXiv:0710.4598] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    A. Salam and E. Sezgin, Chiral compactification on Minkowski X S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    C. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  56. [56]
    C. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    C. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Hoover and C. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C. Burgess, D. Hoover and G. Tasinato, Technical naturalness on a codimension-2 brane, JHEP 06 (2009) 014 [arXiv:0903.0402] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M. Williams, C. Burgess, L. van Nierop and A. Salvio, Running with rugby balls: bulk renormalization of codimension-2 branes, JHEP 01 (2013) 102 [arXiv:1210.3753] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C. Burgess, L. van Nierop, S. Parameswaran, A. Salvio and M. Williams, Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction, JHEP 02 (2013) 120 [arXiv:1210.5405] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. Leblond, Geometry of large extra dimensions versus graviton emission, Phys. Rev. D 64 (2001) 045016 [hep-ph/0104273] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    G. Gibbons, R. Güven and C. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].ADSGoogle Scholar
  64. [64]
    Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    C. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    S. Parameswaran, G. Tasinato and I. Zavala, The 6D superswirl, Nucl. Phys. B 737 (2006) 49 [hep-th/0509061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    H.M. Lee and C. Lüdeling, The general warped solution with conical branes in six-dimensional supergravity, JHEP 01 (2006) 062 [hep-th/0510026] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A.J. Tolley, C. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Scaling solutions to 6D gauged chiral supergravity, New J. Phys. 8 (2006) 324 [hep-th/0608083] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.J. Tolley, C. Burgess, C. de Rham and D. Hoover, Exact wave solutions to 6D gauged chiral supergravity, JHEP 07 (2008) 075 [arXiv:0710.3769] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Minamitsuji, Instability of brane cosmological solutions with flux compactifications, Class. Quant. Grav. 25 (2008) 075019 [arXiv:0801.3080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    C. Burgess, C. de Rham, D. Hoover, D. Mason and A. Tolley, Kicking the rugby ball: perturbations of 6D gauged chiral supergravity, JCAP 02 (2007) 009 [hep-th/0610078] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Parameswaran, S. Randjbar-Daemi and A. Salvio, General perturbations for braneworld compactifications and the six dimensional case, JHEP 03 (2009) 136 [arXiv:0902.0375] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago Univ. Pr., Chicago U.S.A. (1996).Google Scholar
  79. [79]
    S. Hannestad and G.G. Raffelt, Stringent neutron star limits on large extra dimensions, Phys. Rev. Lett. 88 (2002) 071301 [hep-ph/0110067] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    S. Hannestad and G. Raffelt, New supernova limit on large extra dimensions, Phys. Rev. Lett. 87 (2001) 051301 [hep-ph/0103201] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    S. Cullen and M. Perelstein, SN1987a constraints on large compact dimensions, Phys. Rev. Lett. 83 (1999) 268 [hep-ph/9903422] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    V.D. Barger, T. Han, C. Kao and R.-J. Zhang, Astrophysical constraints on large extra dimensions, Phys. Lett. B 461 (1999) 34 [hep-ph/9905474] [INSPIRE].ADSGoogle Scholar
  83. [83]
    D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.P. Miller, E. de Rafael and B.L. Roberts, Muon (g-2): experiment and theory, Rept. Prog. Phys. 70 (2007) 795 [hep-ph/0703049] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    LEP Higgs Working for Higgs boson searches, ALEPH, DELPHI, CERN-L3 and OPAL collaborations, Searches for invisible Higgs bosons: preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107032 [INSPIRE].
  86. [86]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  87. [87]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  88. [88]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].ADSGoogle Scholar
  90. [90]
    ATLAS collaboration, Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 705 (2011) 294 [arXiv:1106.5327] [INSPIRE].ADSGoogle Scholar
  91. [91]
    ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 1 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-096, CERN, Geneva Switzerland (2011).
  92. [92]
    C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].ADSGoogle Scholar
  93. [93]
    CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].ADSGoogle Scholar
  94. [94]
    CMS collaboration, Search for new physics with a monojet and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-EXO-11-059, CERN, Geneva Switzerland (2011).
  95. [95]
    A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, arXiv:1205.3169 [INSPIRE].
  96. [96]
    Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an invisible Higgs signal at the LHC, arXiv:1211.7015 [INSPIRE].
  98. [98]
    G. Raffelt and D. Seckel, Multiple scattering suppression of the bremsstrahlung emission of neutrinos and axions in supernovae, Phys. Rev. Lett. 67 (1991) 2605 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Grifols, E. Masso and S. Peris, Energy loss from the sun and red giants: bounds on short range baryonic and leptonic forces, Mod. Phys. Lett. A 4 (1989) 311 [INSPIRE].ADSGoogle Scholar
  100. [100]
    C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    N. Ishizuka and M. Yoshimura, Axion and dilaton emissivity from nascent neutron stars, Prog. Theor. Phys. 84 (1990) 233 [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    C. Hanhart, D.R. Phillips and S. Reddy, Neutrino and axion emissivities of neutron stars from nucleon-nucleon scattering data, Phys. Lett. B 499 (2001) 9 [astro-ph/0003445] [INSPIRE].ADSGoogle Scholar
  103. [103]
    C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN1987a and nucleon-nucleon scattering data, Nucl. Phys. B 595 (2001) 335 [nucl-th/0007016] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    D. Arndt and P.J. Fox, Saxion emission from SN1987a, JHEP 02 (2003) 036 [hep-ph/0207098] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    S. Weinberg, Mass of the Higgs boson, Phys. Rev. Lett. 36 (1976) 294 [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A.D. Linde, Dynamical symmetry restoration and constraints on masses and coupling constants in gauge theories, JETP Lett. 23 (1976) 64 [Pisma Zh. Eksp. Teor. Fiz. 23 (1976) 73] [INSPIRE].ADSGoogle Scholar
  107. [107]
    B. Grzadkowski and M. Lindner, Stability of triviality mass bounds in the Standard Model, Phys. Lett. B 178 (1986) 81 [INSPIRE].ADSGoogle Scholar
  108. [108]
    M. Lüscher and P. Weisz, Scaling laws and triviality bounds in the lattice ϕ 4 theory. 1. One component model in the symmetric phase, Nucl. Phys. B 290 (1987) 25 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    M. Lüscher and P. Weisz, Scaling laws and triviality bounds in the lattice ϕ 4 theory. 2. One component model in the phase with spontaneous symmetry breaking, Nucl. Phys. B 295 (1988) 65 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    S. Dawson, Introduction to electroweak symmetry breaking, hep-ph/9901280 [INSPIRE].
  111. [111]
    T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].ADSGoogle Scholar
  112. [112]
    T. Han and Z. Liu, Direct measurement of the Higgs boson total width at a muon collider, Phys. Rev. D 87 (2013) 033007 [arXiv:1210.7803] [INSPIRE].ADSGoogle Scholar
  113. [113]
    H. Baer et al., Physics at the International Linear Collider, physics chapter of the ILC detailed baseline design report, preliminary version, http://lcsim.org/papers/DBDPhysics.pdf, draft of January 22 2013.
  114. [114]
    J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  115. [115]
    F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  116. [116]
    S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].
  117. [117]
    C. Burgess and L. van Nierop, Technically natural cosmological constant from supersymmetric 6D brane backreaction, arXiv:1108.0345 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Physics & AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations