Deformations of gauged SO(8) supergravity and supergravity in eleven dimensions

Article

Abstract

Motivated by the fact that there exists a continuous one-parameter family of gauged SO(8) supergravities, possible eleven-dimensional origins of this phenomenon are explored. Taking the original proof of the consistency of the truncation of 11D supergravity to SO(8) gauged supergravity as a starting point, a number of critical issues is discussed, such as the preferred electric-magnetic duality frame in four dimensions and the existence of dual magnetic gauge fields and related quantities in eleven dimensions. Some of those issues are resolved but others seem to point to obstructions in embedding the continuous degeneracy in 11D supergravity. While the final outcome of these efforts remains as yet inconclusive, several new results are obtained. Among those is the full non-linear ansatz for the seven-dimensional flux expressed in terms of the scalars and pseudoscalars of 4D supergravity, valid for both the S7 and the T7 truncations without resorting to tensor-scalar duality.

Keywords

Gauge Symmetry Field Theories in Higher Dimensions Supergravity Models 

References

  1. [1]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    B. de Wit and H. Nicolai, The parallelizing S 7 torsion in gauged N = 8 supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Günaydin and N. Warner, The G 2 invariant compactifications in eleven-dimensional supergravity, Nucl. Phys. B 248 (1984) 685 [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. de Wit and H. Nicolai, The consistency of the S 7 truncation in D = 11 supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Nicolai and K. Pilch, Consistent truncation of D = 11 Supergravity on AdS 4 × S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B. de Wit and H. Nicolai, Hidden symmetry in D = 11 supergravity, Phys. Lett. B 155 (1985) 47 [INSPIRE].ADSGoogle Scholar
  16. [16]
    B. de Wit and H. Nicolai, D = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Englert, Spontaneous compactification of eleven-dimensional supergravity, Phys. Lett. B 119 (1982) 339 [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. de Wit and H. Nicolai, A new SO(7) invariant solution of D = 11 supergravity, Phys. Lett. B 148 (1984) 60 [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. de Wit and H. Nicolai, On the relation between D = 4 and D = 11 supergravity, Nucl. Phys. B 243 (1984) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Koepsell, H. Nicolai and H. Samtleben, An exceptional geometry for D = 11 supergravity?, Class. Quant. Grav. 17 (2000) 3689 [hep-th/0006034] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    B. de Wit, H. Nicolai and N. Warner, The embedding of gauged N = 8 supergravity into D = 11 supergravity, Nucl. Phys. B 255 (1985) 29 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    B. de Wit, Supergravity, hep-th/0212245 [INSPIRE].
  24. [24]
    M. de Roo and P. Wagemans, Gauge matter coupling in N = 4 supergravity, Nucl. Phys. B 262 (1985) 644 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    X. Bekaert, N. Boulanger and M. Henneaux, Consistent deformations of dual formulations of linearized gravity: A no go result, Phys. Rev. D 67 (2003) 044010 [hep-th/0210278] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    H. Nicolai, P. Townsend and P. van Nieuwenhuizen, Comments on eleven-dimensional supergravity, Lett. Nuovo Cim. 30 (1981) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I.A. Bandos, N. Berkovits and D.P. Sorokin, Duality symmetric eleven-dimensional supergravity and its coupling to M-branes, Nucl. Phys. B 522 (1998) 214 [hep-th/9711055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    H. Godazkar, M. Godazkar and H. Nicolai, Testing the non-linear flux ansatz for maximal supergravity, Phys. Rev. D in press, [arXiv:1303.1013]. [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.NikhefAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsUtrecht UniversityUtrechtThe Netherlands
  3. 3.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany

Personalised recommendations