ADHM polytopes

  • James P. Allen
  • Paul Sutcliffe


We discuss the construction of ADHM data for Yang-Mills instantons with the symmetries of the regular polytopes in four dimensions. We show that the case of the pentatope can be studied using a simple modification of the approach previously developed for platonic data. For the remaining polytopes, we describe a framework in which the building blocks of the ADHM data correspond to the edges in the extended Dynkin diagram that arises via the McKay correspondence. These building blocks are then assembled into ADHM data through the identification of pairs of commuting representations of the associated binary polyhedral group. We illustrate our procedure by the construction of ADHM data associated with the pentatope, the hyperoctahedron and the 24-cell, with instanton charges 4, 7 and 23, respectively. Furthermore, we show that within our framework these are the lowest possible charges with these symmetries. Plots of topological charge densities are presented that confirm the polytope structucore and the relation to JNR instanton data is clarified.


Solitons Monopoles and Instantons Discrete and Finite Symmetries 


  1. [1]
    N.S. Manton and P.M. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).zbMATHCrossRefGoogle Scholar
  2. [2]
    M.F. Atiyah and N.S. Manton, Skyrmions from instantons, Phys. Lett. B 222 (1989) 438 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M.F. Atiyah and N.S. Manton, Geometry and kinematics of two skyrmions, Commun. Math. Phys. 153 (1993) 391 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  5. [5]
    P.M. Sutcliffe, Skyrmions, instantons and holography, JHEP 08 (2010) 019 [arXiv:1003.0023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    R.A. Leese and N.S. Manton, Stable instanton generated Skyrme fields with baryon numbers three and four, Nucl. Phys. A 572 (1994) 575 [INSPIRE].ADSGoogle Scholar
  8. [8]
    M.A. Singer and P.M. Sutcliffe, Symmetric instantons and Skyrme fields, Nonlinearity 12 (1999) 987.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    P.M. Sutcliffe, Instantons and the buckyball, Proc. Roy. Soc. Lond. A 460 (2004) 2903.MathSciNetADSGoogle Scholar
  10. [10]
    N.S. Manton and P.M. Sutcliffe, Platonic hyperbolic monopoles, arXiv:1207.2636 [INSPIRE].
  11. [11]
    M.F. Atiyah, Magnetic monopoles in hyperbolic spaces, in M. Atiyah: collected works, volume 5, Clarendon Press, Oxford U.K.(1988).Google Scholar
  12. [12]
    R. Jackiw, C. Nohl and C. Rebbi, Conformal properties of pseudoparticle configurations, Phys. Rev. D 15 (1977) 1642 [INSPIRE].ADSGoogle Scholar
  13. [13]
    C.J. Houghton, N.S. Manton and P.M. Sutcliffe, Rational maps, monopoles and Skyrmions, Nucl. Phys. B 510 (1998) 507 [hep-th/9705151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. McKay, Graphs, singularities and finite groups, Proc. Sympos. Pure Math. AMS 37 (1980) 183.MathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Du Val, Homographies, quaternions and rotations, Clarendon Press, Oxford U.K. (1964).zbMATHGoogle Scholar
  16. [16]
    E. Corrigan, D. Fairlie, S. Templeton and P. Goddard, A Greens function for the general selfdual gauge field, Nucl. Phys. B 140 (1978) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Osborn, Semiclassical functional integrals for selfdual gauge fields, Annals Phys. 135 (1981) 373 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamU.K

Personalised recommendations