Advertisement

Supersymmetry on three-dimensional Lorentzian curved spaces and black hole holography

  • Kiril HristovEmail author
  • Alessandro Tomasiello
  • Alberto Zaffaroni
Article

Abstract

We study \( \mathcal{N} \) ≤ 2 superconformal and supersymmetric theories on Lorentzian three-manifolds with a view toward holographic applications, in particular to BPS black hole solutions. As in the Euclidean case, preserved supersymmetry for asymptotically locally AdS solutions implies the existence of a (charged) “conformal Killing spinor” on the boundary. We find that such spinors exist whenever there is a conformal Killing vector which is null or timelike. We match these results with expectations from supersymmetric four-dimensional asymptotically AdS black holes. In particular, BPS bulk solutions in global AdS are known to fall in two classes, depending on their graviphoton magnetic charge, and we reproduce this dichotomy from the boundary perspective. We finish by sketching a proposal to find the dual superconformal quantum mechanics on the horizon of the magnetic black holes.

Keywords

Supersymmetric gauge theory AdS-CFT Correspondence Black Holes 

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in lorentzian curved spaces and holography, arXiv:1207.2181 [INSPIRE].
  11. [11]
    T.T. Dumitrescu and G. Festuccia, Exploring curved superspace (II), JHEP 01 (2013) 072 [arXiv:1209.5408] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid supersymmetric backgrounds of minimal off-shell supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. de Medeiros, Rigid supersymmetry, conformal coupling and twistor spinors, arXiv:1209.4043 [INSPIRE].
  17. [17]
    A. Kehagias and J. Russo, Global supersymmetry on curved spaces in various dimensions, arXiv:1211.1367 [INSPIRE].
  18. [18]
    H. Samtleben, E. Sezgin and D. Tsimpis, Rigid 6D supersymmetry and localization, JHEP 03 (2013) 137 [arXiv:1212.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.M. Kuzenko, Symmetries of curved superspace, JHEP 03 (2013) 024 [arXiv:1212.6179] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Superconformal unified field theory, Phys. Rev. Lett. 39 (1977) 1109 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend et al., Black holes and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on superconformal quantum mechanics and multiblack hole moduli spaces, hep-th/9911066 [INSPIRE].
  34. [34]
    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D. Gaiotto, A. Simons, A. Strominger and X. Yin, D0-branes in black hole attractors, hep-th/0412179 [INSPIRE].
  36. [36]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSGoogle Scholar
  37. [37]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.L. Cacciatori, M.M. Caldarelli, D. Klemm and D.S. Mansi, More on BPS solutions of N =2, D=4 gauged supergravity, JHEP 07 (2004) 061[hep-th/0406238] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    K. Hristov, C. Toldo and S. Vandoren, Black branes in AdS: BPS bounds and asymptotic charges, Fortsch. Phys. 60 (2012) 1057 [arXiv:1201.6592] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Roček and P. van Nieuwenhuizen, N2 supersymmetric Chern-Simons terms as D = 3 extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP 12 (2011) 052 [arXiv:1109.0496] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformal supergravities as Chern-Simons theories revisited, JHEP 03 (2013) 113 [arXiv:1212.6852] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H. Baum and F. Leitner, The twistor equation in lorentzian spin geometry, Math. Zeitschrift 247 (2004) 795.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    H. Lü, C. Pope and J. Rahmfeld, A construction of Killing spinors on S n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  49. [49]
    J.M. Figueroa-O’Farrill and J. Simon, Supersymmetric Kaluza-Klein reductions of AdS backgrounds, Adv. Theor. Math. Phys. 8 (2004) 217 [hep-th/0401206] [INSPIRE].MathSciNetGoogle Scholar
  50. [50]
    C. Boubel, Sur lholonomie des variétés pseudo-riemanniennes, Ph.D. Thesis, Université Henri Poincaré, Nancy I, Nancy France (2000).Google Scholar
  51. [51]
    D. Djokovic, J. Patera, P. Winternitz and H. Zassenhaus, Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 24 (1983) 1363 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Hawking and G. Ellis, The large scale structure of space-time, vol. 1, Cambridge university Press, Cambridge U.K. (1975).Google Scholar
  53. [53]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    K. Hristov, Lessons from the vacuum structure of 4d N = 2 supergravity, arXiv:1207.3830 [INSPIRE].
  55. [55]
    K. Hristov, S. Katmadas and V. Pozzoli, Ungauging black holes and hidden supercharges, JHEP 01 (2013) 110 [arXiv:1211.0035] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    D. Fabbri, P. Fré, L. Gualtieri and P. Termonia, Osp(N4) supermultiplets as conformal superfields on partial AdS 4 and the generic form of N = 2, D = 3 gauge theories, Class. Quant. Grav. 17 (2000) 55 [hep-th/9905134] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    K. Pilch, P. van Nieuwenhuizen and M. Sohnius, de Sitter superalgebras and supergravity, Commun. Math. Phys. 98 (1985) 105 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    G. Gibbons and S. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs, Class. Quant. Grav. 28 (2011) 105015 [arXiv:1007.3996] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in Anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Kiril Hristov
    • 1
    • 2
    Email author
  • Alessandro Tomasiello
    • 1
    • 2
  • Alberto Zaffaroni
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations