Advertisement

Consistent on shell renormalisation of electroweakinos in the complex MSSM: LHC and LC predictions

  • Aoife BharuchaEmail author
  • Alison Fowler
  • Gudrid Moortgat-Pick
  • Georg Weiglein
Open Access
Article

Abstract

We extend the formalism developed in ref. [53] for the renormalisation of the chargino-neutralino sector to the most general case of the MSSM with complex parameters. We show that products of imaginary parts arising from MSSM parameters and from absorptive parts of loop integrals can already contribute to predictions for physical observables at the one-loop level, and demonstrate that the consistent treatment of such contributions gives rise to non-trivial structure, either in the field renormalisation constants or the corrections associated with the external legs of the considered diagrams. We furthermore point out that the phases of the parameters in the chargino-neutralino sector do not need to be renormalised at the one-loop level, and demonstrate that the appropriate choice for the mass parameters used as input for the on-shell conditions depends both on the process and the region of MSSM parameter space under consideration. As an application, we compute the complete one-loop results in the MSSM with complex parameters for the process \( {h_a}\to \widetilde{\chi}_i^{+}\widetilde{\chi}_j^{-} \) (Higgs-propagator corrections have been incorporated up to the two-loop level), which may be of interest for SUSY Higgs searches at the LHC, and for chargino pair-production at an e + e Linear Collider, \( {e^{+}}{e^{-}}\to \widetilde{\chi}_i^{+}\widetilde{\chi}_j^{-} \). We investigate the dependence of the theoretical predictions on the phases of the MSSM parameters, analysing in particular the numerical relevance of the absorptive parts of loop integrals.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Tevatron New Physics, Higgs Working Group, CDF and D0 collaborations, Updated Combination of CDF and D0 Searches for Standard Model Higgs Boson Production with up to 10.0 fb −1 of Data, arXiv:1207.0449 [INSPIRE].
  4. [4]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  8. [8]
    O. Buchmueller et al., Higgs and Supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Strege et al., Updated global fits of the CMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, JCAP 03 (2012) 030 [arXiv:1112.4192] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Brummer and W. Buchmüller, The Fermi scale as a focus point of high-scale gauge mediation, JHEP 05 (2012) 006 [arXiv:1201.4338] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Ellis and K.A. Olive, Revisiting the Higgs Mass and Dark Matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Desai, B. Mukhopadhyaya and S. Niyogi, Constraints on Invisible Higgs Decay in MSSM in the Light of Diphoton Rates from the LHC, arXiv:1202.5190 [INSPIRE].
  16. [16]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Cheng, J. Li, T. Li, D.V. Nanopoulos and C. Tong, Electroweak Supersymmetry around the Electroweak Scale, Eur. Phys. J. C 73 (2013) 2322 [arXiv:1202.6088] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Asano, S. Matsumoto, M. Senami and H. Sugiyama, Comprehensive Analysis on the Light Higgs Boson Scenario, Phys. Rev. D 86 (2012) 015020 [arXiv:1202.6318] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.A. Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in Light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Fowlie et al., The CMSSM Favoring New Territories: The Impact of New LHC Limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M.R. Buckley and D. Hooper, Are There Hints of Light Stops in Recent Higgs Search Results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs Boson Discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, B s to μ + μ and XENON100 Data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z. Heng, A 125 GeV Higgs and its di-photon signal in different SUSY models: a mini review, arXiv:1210.3751 [INSPIRE].
  30. [30]
    U. Haisch and F. Mahmoudi, MSSM: Cornered and Correlated, JHEP 01 (2013) 061 [arXiv:1210.7806] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Heinemeyer, O. Stål and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Benbrik et al., Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Bechtle et al., MSSM Interpretations of the LHC Discovery: Light or Heavy Higgs?, arXiv:1211.1955 [INSPIRE].
  34. [34]
    A. Bottino, N. Fornengo and S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 095013 [arXiv:1112.5666] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Drees, A Supersymmetric Explanation of the Excess of Higgs-Like Events at the LHC and at LEP, Phys. Rev. D 86 (2012) 115018 [arXiv:1210.6507] [INSPIRE].ADSGoogle Scholar
  36. [36]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].ADSGoogle Scholar
  38. [38]
    CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ATLAS collaboration, Search for a supersymmetric partner to the top quark in final states with jets and missing transverse momentum at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 109 (2012) 211802 [arXiv:1208.1447] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions using 4.7 fb −1 of ATLAS data, Phys. Rev. Lett. 109 (2012) 211803 [arXiv:1208.2590] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].ADSGoogle Scholar
  43. [43]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].ADSGoogle Scholar
  44. [44]
    CMS collaboration, Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV, Phys. Rev. D 86 (2012) 072010 [arXiv:1208.4859] [INSPIRE].ADSGoogle Scholar
  45. [45]
    CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  47. [47]
    H.K. Dreiner et al., Mass Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Ibrahim and P. Nath, CP Violation From Standard Model to Strings, Rev. Mod. Phys. 80 (2008) 577 [arXiv:0705.2008] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    O. Kittel, SUSY CP phases and asymmetries at colliders, J. Phys. Conf. Ser. 171 (2009) 012094 [arXiv:0904.3241] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    G. Moortgat-Pick, K. Rolbiecki and J. Tattersall, Momentum reconstruction at the LHC for probing CP-violation in the stop sector, Phys. Rev. D 83 (2011) 115012 [arXiv:1008.2206] [INSPIRE].ADSGoogle Scholar
  51. [51]
    H. Dreiner, O. Kittel, S. Kulkarni and A. Marold, Testing the CP-violating MSSM in stau decays at the LHC and ILC, Phys. Rev. D 83 (2011) 095012 [arXiv:1011.2449] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S. Bornhauser et al., CP Asymmetries in the Supersymmetric Trilepton Signal at the LHC, Eur. Phys. J. C 72 (2012) 1887 [arXiv:1110.6131] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Fowler and G. Weiglein, Precise Predictions for Higgs Production in Neutralino Decays in the Complex MSSM, JHEP 01 (2010) 108 [arXiv:0909.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Fritzsche, S. Heinemeyer, H. Rzehak and C. Schappacher, Heavy Scalar Top Quark Decays in the Complex MSSM: A Full One-Loop Analysis, Phys. Rev. D 86 (2012) 035014 [arXiv:1111.7289] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Heinemeyer, F. von der Pahlen and C. Schappacher, Chargino Decays in the Complex MSSM: A Full One-Loop Analysis, Eur. Phys. J. C 72 (2012) 1892 [arXiv:1112.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Heinemeyer and C. Schappacher, Heavy Scalar Tau Decays in the Complex MSSM: A Full One-Loop Analysis, Eur. Phys. J. C 72 (2012) 2136 [arXiv:1204.4001] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A. Bharucha, S. Heinemeyer, F. von der Pahlen and C. Schappacher, Neutralino Decays in the Complex MSSM at One-Loop: a Comparison of On-Shell Renormalization Schemes, Phys. Rev. D 86 (2012) 075023 [arXiv:1208.4106] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Bharucha, Chargino Production at a future LC in the MSSM with complex Parameters: NLO Corrections, arXiv:1202.6284 [INSPIRE].
  59. [59]
    A. Bharucha, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki and G. Weiglein, MSSM parameter determination via chargino production at the LC: NLO corrections, arXiv:1208.1521 [INSPIRE].
  60. [60]
    A. Lahanas, K. Tamvakis and N. Tracas, One loop corrections to the neutralino sector and radiative electroweak breaking in the MSSM, Phys. Lett. B 324 (1994) 387 [hep-ph/9312251] [INSPIRE].ADSGoogle Scholar
  61. [61]
    D. Pierce and A. Papadopoulos, Radiative corrections to neutralino and chargino masses in the minimal supersymmetric model, Phys. Rev. D 50 (1994) 565 [hep-ph/9312248] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D. Pierce and A. Papadopoulos, The Complete radiative corrections to the gaugino and Higgsino masses in the minimal supersymmetric model, Nucl. Phys. B 430 (1994) 278 [hep-ph/9403240] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    H. Eberl, M. Kincel, W. Majerotto and Y. Yamada, One loop corrections to the chargino and neutralino mass matrices in the on-shell scheme, Phys. Rev. D 64 (2001) 115013 [hep-ph/0104109] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Fritzsche and W. Hollik, Complete one loop corrections to the mass spectrum of charginos and neutralinos in the MSSM, Eur. Phys. J. C 24 (2002) 619 [hep-ph/0203159] [INSPIRE].CrossRefGoogle Scholar
  65. [65]
    W. Oller, H. Eberl, W. Majerotto and C. Weber, Analysis of the chargino and neutralino mass parameters at one loop level, Eur. Phys. J. C 29 (2003) 563 [hep-ph/0304006] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Drees, W. Hollik and Q. Xu, One-loop calculations of the decay of the next-to-lightest neutralino in the MSSM, JHEP 02 (2007) 032 [hep-ph/0610267] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.C. Fowler, Precise Predictions for Higgs Production in Neutralino Decays in the Complex MSSM, Ph.D. Thesis, Durham University, Durham U.K. (2010), http://etheses.dur.ac.uk/449/1/Thesis_AFowler.pdf.
  68. [68]
    A. Chatterjee, M. Drees, S. Kulkarni and Q. Xu, On the On-Shell Renormalization of the Chargino and Neutralino Masses in the MSSM, Phys. Rev. D 85 (2012) 075013 [arXiv:1107.5218] [INSPIRE].ADSGoogle Scholar
  69. [69]
    F. Moortgat, S. Abdullin and D. Denegri, Observability of MSSM Higgs bosons via sparticle decay modes in CMS, hep-ph/0112046 [INSPIRE].
  70. [70]
    M. Bisset et al., Four-lepton LHC events from MSSM Higgs boson decays into neutralino and chargino pairs, JHEP 08 (2009) 037 [arXiv:0709.1029] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    H. Baer, M. Bisset, D. Dicus, C. Kao and X. Tata, The Search for Higgs bosons of minimal supersymmetry: Impact of supersymmetric decay modes, Phys. Rev. D 47 (1993) 1062 [INSPIRE].ADSGoogle Scholar
  72. [72]
    H. Baer, M. Bisset, C. Kao and X. Tata, Detecting Higgs boson decays to neutralinos at hadron supercolliders, Phys. Rev. D 50 (1994) 316 [hep-ph/9402265] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Bisset, M. Guchait and S. Moretti, Signatures of MSSM charged Higgs bosons via chargino neutralino decay channels at the LHC, Eur. Phys. J. C 19 (2001) 143 [hep-ph/0010253] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    CMS collaboration, CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Gennai et al., Search for heavy neutral MSSM Higgs bosons with CMS: Reach and Higgs-mass precision, Eur. Phys. J. C 52 (2007) 383 [arXiv:0704.0619] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R.-Y. Zhang, W.-G. Ma, L.-H. Wan and Y. Jiang, Supersymmetric electroweak corrections to the Higgs boson decays into chargino or neutralino pair, Phys. Rev. D 65 (2002) 075018 [hep-ph/0201132] [INSPIRE].ADSGoogle Scholar
  77. [77]
    H. Eberl, W. Majerotto and Y. Yamada, Full one-loop corrections to SUSY Higgs boson decays into charginos, Phys. Lett. B 597 (2004) 275 [hep-ph/0405187] [INSPIRE].ADSGoogle Scholar
  78. [78]
    W. Frisch, H. Eberl and H. Hlucha, HFOLDa program package for calculating two-body MSSM Higgs decays at full one-loop level, Comput. Phys. Commun. 182 (2011) 2219 [arXiv:1012.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    K. Desch, J. Kalinowski, G.A. Moortgat-Pick, M. Nojiri and G. Polesello, SUSY parameter determination in combined analyses at LHC/LC, JHEP 02 (2004) 035 [hep-ph/0312069] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    W. Oller, H. Eberl and W. Majerotto, Precise predictions for chargino and neutralino pair production in e + e annihilation, Phys. Rev. D 71 (2005) 115002 [hep-ph/0504109] [INSPIRE].ADSGoogle Scholar
  81. [81]
    T. Fritzsche, Berechnung von Observablen zur supersymmetrischen Teilchenerzeugung an Hochenergie-Collidern unter Einschluss hoeherer Ordnungen, Ph.D. Thesis, Karlsruhe University, Karlsruhe Germany (2005), Cuvillier Verlag, Göttingen Germany (2005), ISBN:3-86537-577-4.Google Scholar
  82. [82]
    P. Osland and A. Vereshagin, CP violation in unpolarized e + e charginos at one loop level, Phys. Rev. D 76 (2007) 036001 [arXiv:0704.2165] [INSPIRE].ADSGoogle Scholar
  83. [83]
    K. Rolbiecki and J. Kalinowski, CP violation at one loop in the polarization-independent chargino production in e + e collisions, Phys. Rev. D 76 (2007) 115006 [arXiv:0709.2994] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S. Dimopoulos and D.W. Sutter, The supersymmetric flavor problem, Nucl. Phys. B 452 (1995) 496 [hep-ph/9504415] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    V.D. Barger et al., CP violating phases in SUSY, electric dipole moments and linear colliders, Phys. Rev. D 64 (2001) 056007 [hep-ph/0101106] [INSPIRE].ADSGoogle Scholar
  86. [86]
    C. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    B. Regan, E. Commins, C. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    W. Griffith et al., Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W. Hollik, J.I. Illana, S. Rigolin and D. Stöckinger, One loop MSSM contribution to the weak magnetic dipole moments of heavy fermions, Phys. Lett. B 416 (1998) 345 [hep-ph/9707437] [INSPIRE].ADSGoogle Scholar
  90. [90]
    W. Hollik, J.I. Illana, S. Rigolin and D. Stöckinger, Weak electric dipole moments of heavy fermions in the MSSM, Phys. Lett. B 425 (1998) 322 [hep-ph/9711322] [INSPIRE].ADSGoogle Scholar
  91. [91]
    D.A. Demir, O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tan beta, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999) 3972] [hep-ph/9811202] [INSPIRE].
  93. [93]
    A. Pilaftsis, Higgs boson two loop contributions to electric dipole moments in the MSSM, Phys. Lett. B 471 (1999) 174 [hep-ph/9909485] [INSPIRE].ADSGoogle Scholar
  94. [94]
    O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE].ADSGoogle Scholar
  95. [95]
    Y. Li, S. Profumo and M. Ramsey-Musolf, A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM, JHEP 08 (2010) 062 [arXiv:1006.1440] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    J. Ellis, F. Moortgat, G. Moortgat-Pick, J. Smillie and J. Tattersall, Measurement of CP-violation in Stop Cascade Decays at the LHC, Eur. Phys. J. C 60 (2009) 633 [arXiv:0809.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    T. Ibrahim and P. Nath, The Chromoelectric and purely gluonic operator contributions to the neutron electric dipole moment in N = 1 supergravity, Phys. Lett. B 418 (1998) 98 [hep-ph/9707409] [INSPIRE].MathSciNetADSGoogle Scholar
  98. [98]
    T. Ibrahim and P. Nath, The Neutron and the electron electric dipole moment in N = 1 supergravity unification, Phys. Rev. D 57 (1998) 478 [Erratum ibid. D 58 (1998) 019901] [hep-ph/9708456] [INSPIRE].
  99. [99]
    M. Brhlik, G.J. Good and G.L. Kane, Electric dipole moments do not require the CP-violating phases of supersymmetry to be small, Phys. Rev. D 59 (1999) 115004 [hep-ph/9810457] [INSPIRE].ADSGoogle Scholar
  100. [100]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven Electroweak Baryogenesis with highly suppressed Electric Dipole Moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [INSPIRE].ADSGoogle Scholar
  101. [101]
    G. Moortgat-Pick, K. Rolbiecki, J. Tattersall and P. Wienemann, Probing CP-violation with and without Momentum Reconstruction at the LHC, JHEP 01 (2010) 004 [arXiv:0908.2631] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    F.F. Deppisch and O. Kittel, CP violation in sbottom decays, JHEP 06 (2010) 067 [arXiv:1003.5186] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    A. Bartl, H. Fraas, O. Kittel and W. Majerotto, CP sensitive observables in e + e → ∼chi0(i)chi0(j) and neutralino decay into Z boson, Eur. Phys. J. C 36 (2004) 233 [hep-ph/0402016] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    O. Kittel, G. Moortgat-Pick, K. Rolbiecki, P. Schade and M. Terwort, Measurement of CP asymmetries in neutralino production at the ILC, Eur. Phys. J. C 72 (2012) 1854 [arXiv:1108.3220] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    M. Frank et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [INSPIRE].ADSGoogle Scholar
  107. [107]
    M. Frank, S. Heinemeyer, W. Hollik and G. Weiglein, The Higgs boson masses of the complex MSSM: A Complete one loop calculation, hep-ph/0212037 [INSPIRE].
  108. [108]
    A. Freitas and D. Stöckinger, Gauge dependence and renormalization of tan beta, hep-ph/0210372 [INSPIRE].
  109. [109]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  110. [110]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  111. [111]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, FeynHiggs: A program for the calculation of MSSM Higgs-boson observablesVersion 2.6.5, Comput. Phys. Commun. 180 (2009) 1426 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  113. [113]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  114. [114]
    ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    K. Williams and G. Weiglein, Precise predictions for h ah b h c decays in the complex MSSM, Phys. Lett. B 660 (2008) 217 [arXiv:0710.5320] [INSPIRE].ADSGoogle Scholar
  116. [116]
    K.E. Williams, H. Rzehak and G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters, Eur. Phys. J. C 71 (2011) 1669 [arXiv:1103.1335] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    J. Guasch, W. Hollik and J. Solà, Fermionic decays of sfermions: A Complete discussion at one loop order, JHEP 10 (2002) 040 [hep-ph/0207364] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    B.A. Kniehl and A. Pilaftsis, Mixing renormalization in Majorana neutrino theories, Nucl. Phys. B 474 (1996) 286 [hep-ph/9601390] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    A. Denner and T. Sack, Renormalization of the quark mixing matrix, Nucl. Phys. B 347 (1990) 203 [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    P. Gambino, P. Grassi and F. Madricardo, Fermion mixing renormalization and gauge invariance, Phys. Lett. B 454 (1999) 98 [hep-ph/9811470] [INSPIRE].ADSGoogle Scholar
  122. [122]
    Y. Yamada, Gauge dependence of the on-shell renormalized mixing matrices, Phys. Rev. D 64 (2001) 036008 [hep-ph/0103046] [INSPIRE].ADSGoogle Scholar
  123. [123]
    B.A. Kniehl and A. Sirlin, A Novel Formulation of Cabibbo-Kobayashi-Maskawa Matrix Renormalization, Phys. Lett. B 673 (2009) 208 [arXiv:0901.0114] [INSPIRE].ADSGoogle Scholar
  124. [124]
    D. Espriu, J. Manzano and P. Talavera, Flavor mixing, gauge invariance and wave function renormalization, Phys. Rev. D 66 (2002) 076002 [hep-ph/0204085] [INSPIRE].ADSGoogle Scholar
  125. [125]
    Y. Zhou, Wave-function renormalization prescriptions, Mod. Phys. Lett. A 21 (2006) 2763 [hep-ph/0502186] [INSPIRE].ADSGoogle Scholar
  126. [126]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    J. Kublbeck, M. Böhm and A. Denner, FEYN ARTS: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    J. Kublbeck, H. Eck and R. Mertig, Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc, Nucl. Phys. Proc. Suppl. 29A (1992) 204 [INSPIRE].ADSGoogle Scholar
  130. [130]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  131. [131]
    T. Hahn and C. Schappacher, The Implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  132. [132]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSCrossRefGoogle Scholar
  133. [133]
    T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun. 178 (2008) 217 [hep-ph/0611273] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSGoogle Scholar
  136. [136]
    W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSGoogle Scholar
  137. [137]
    D. Stöckinger, Regularization by dimensional reduction: consistency, quantum action principle and supersymmetry, JHEP 03 (2005) 076 [hep-ph/0503129] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    F. del Aguila, A. Culatti, R. Muñoz Tapia and M. Pérez-Victoria, Techniques for one loop calculations in constrained differential renormalization, Nucl. Phys. B 537 (1999) 561 [hep-ph/9806451] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  140. [140]
    Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].
  141. [141]
    J. Lee et al., CPsuperH: A Computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].ADSGoogle Scholar
  143. [143]
    S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].ADSGoogle Scholar
  144. [144]
    S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [INSPIRE].ADSGoogle Scholar
  146. [146]
    B. Allanach et al., The Snowmass points and slopes: Benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    S. Choi et al., Reconstructing the chargino system at e + e linear colliders, Eur. Phys. J. C 14 (2000) 535 [hep-ph/0002033] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Aoife Bharucha
    • 1
    Email author
  • Alison Fowler
    • 2
  • Gudrid Moortgat-Pick
    • 1
    • 3
  • Georg Weiglein
    • 3
  1. 1.II. Institut für Theoretische PhysikUniversity of HamburgHamburgGermany
  2. 2.IPPP, Department of PhysicsUniversity of DurhamDurhamU.K.
  3. 3.DESY, Deutsches Elektronen-Synchrotron,HamburgGermany

Personalised recommendations