Sterile neutrino oscillations: the global picture

  • Joachim Kopp
  • Pedro A. N. Machado
  • Michele Maltoni
  • Thomas Schwetz
Open Access
Article

Abstract

Neutrino oscillations involving eV-scale neutrino mass states are investigated in the context of global neutrino oscillation data including short and long-baseline accelerator, reactor, and radioactive source experiments, as well as atmospheric and solar neutrinos. We consider sterile neutrino mass schemes involving one or two mass-squared differences at the eV2 scale denoted by 3+1, 3+2, and 1+3+1. We discuss the hints for eV-scale neutrinos from \( \mathop{{{v_e}}}\limits^{{\left( - \right)}} \) disappearance (reactor and Gallium anomalies) and \( \mathop{{{v_{\mu }}}}\limits^{{\left( - \right)}}\to \mathop{{{v_e}}}\limits^{{\left( - \right)}} \) appearance (LSND and MiniBooNE) searches, and we present constraints on sterile neutrino mixing from \( \mathop{{{v_{\mu }}}}\limits^{{\left( - \right)}} \) and neutral-current disappearance data. An explanation of all hints in terms of oscillations suffers from severe tension between appearance and disappearance data. The best compatibility is obtained in the 1+3+1 scheme with a p-value of 0.2% and exceedingly worse compatibilities in the 3+1 and 3+2 schemes.

Keywords

Beyond Standard Model Neutrino Physics Solar and Atmospheric Neutrinos 

References

  1. [1]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {{\overline{\nu}}_e} \) appearance in a \( {{\overline{\nu}}_{\mu }} \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].ADSGoogle Scholar
  13. [13]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., A Search for electron neutrino appearance at the Δm 2 ∼ 1 eV 2 scale, Phys. Rev. Lett. 98 (2007) 231801 [arXiv:0704.1500] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillations, Phys. Rev. Lett. 105 (2010) 181801 [arXiv:1007.1150] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Polly, Results from MiniBooNE, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.Google Scholar
  16. [16]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., A Combined νμ → νe and \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillation Analysis of the MiniBooNE Excesses, arXiv:1207.4809 [INSPIRE].
  17. [17]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., Improved Search for \( {{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e} \) Oscillations in the MiniBooNE Experiment, arXiv:1303.2588 [INSPIRE].
  18. [18]
    M.A. Acero, C. Giunti and M. Laveder, Limits on νe and \( {{\overline{\nu}}_e} \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].ADSGoogle Scholar
  22. [22]
    K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, Determination of the anti-neutrino spectrum from U-235 thermal neutron fission products up to 9.5 MeV, Phys. Lett. B 160 (1985) 325 [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Hahn et al., Anti-neutrino spectra from PU-241 and PU-239 thermal neutron fission products, Phys. Lett. B 218 (1989) 365 [INSPIRE].ADSGoogle Scholar
  24. [24]
    F. Von Feilitzsch, A. Hahn and K. Schreckenbach, Experimental beta spectra from PU-239 and U-235 thermal neutron fission products and their correlated anti-neutrinos spectra, Phys. Lett. B 118 (1982) 162 [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Vogel, G. Schenter, F. Mann and R. Schenter, Reactor anti-neutrino spectra and their application to anti-neutrino induced reactions. 2, Phys. Rev. C 24 (1981) 1543 [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Gomez-Cadenas and M. Gonzalez-Garcia, Future tau-neutrino oscillation experiments and present data, Z. Phys. C 71 (1996) 443 [hep-ph/9504246] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Goswami, Accelerator, reactor, solar and atmospheric neutrino oscillation: beyond three generations, Phys. Rev. D 55 (1997) 2931 [hep-ph/9507212] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.M. Bilenky, C. Giunti and W. Grimus, Neutrino mass spectrum from the results of neutrino oscillation experiments, Eur. Phys. J. C 1 (1998) 247 [hep-ph/9607372] [INSPIRE].ADSGoogle Scholar
  30. [30]
    N. Okada and O. Yasuda, A Sterile neutrino scenario constrained by experiments and cosmology, Int. J. Mod. Phys. A 12 (1997) 3669 [hep-ph/9606411] [INSPIRE].ADSGoogle Scholar
  31. [31]
    O. Peres and A.Y. Smirnov, (3 + 1) spectrum of neutrino masses: a Chance for LSND?, Nucl. Phys. B 599 (2001) 3 [hep-ph/0011054] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Sorel, J.M. Conrad and M. Shaevitz, A Combined analysis of short baseline neutrino experiments in the (3 + 1) and (3 + 2) sterile neutrino oscillation hypotheses, Phys. Rev. D 70 (2004) 073004 [hep-ph/0305255] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Conrad, C. Ignarra, G. Karagiorgi, M. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].Google Scholar
  35. [35]
    M. Maltoni, T. Schwetz, M. Tortola and J. Valle, Ruling out four neutrino oscillation interpretations of the LSND anomaly?, Nucl. Phys. B 643 (2002) 321 [hep-ph/0207157] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Strumia, Interpreting the LSND anomaly: sterile neutrinos or CPT violation or. . . ?, Phys. Lett. B 539 (2002) 91 [hep-ph/0201134] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Cirelli, G. Marandella, A. Strumia and F. Vissani, Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments, Nucl. Phys. B 708 (2005) 215 [hep-ph/0403158] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Abazajian et al., Light Sterile Neutrinos: a White Paper, arXiv:1204.5379 [INSPIRE].
  39. [39]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L. Borodovsky et al., Search for muon-neutrino oscillations muon-neutrino to electron-neutrino \( {\nu_{\mu }}\to {\nu_e}\left( {{{\overline{\nu}}_{\mu }}\to {{\overline{\nu}}_e}} \right) \) in a wide band neutrino beam, Phys. Rev. Lett. 68 (1992) 274 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Antonello et al., Experimental search for the LSND anomaly with the ICARUS LAr TPC detector in the CNGS beam, Eur. Phys. J. C 73 (2013) 2345 [arXiv:1209.0122] [INSPIRE].ADSGoogle Scholar
  42. [42]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].ADSGoogle Scholar
  43. [43]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A Search for muon neutrino and antineutrino disappearance in MiniBooNE, Phys. Rev. Lett. 103 (2009) 061802 [arXiv:0903.2465] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    MiniBooNE Collaboration, SciBooNE collaboration, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1eV2 < Δm 2 < 100eV2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].ADSGoogle Scholar
  46. [46]
    C. Giunti and M. Laveder, Status of 3 + 1 Neutrino Mixing, Phys. Rev. D 84 (2011) 093006 [arXiv:1109.4033] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile Neutrinos: cosmology vs Short-BaseLine Experiments, arXiv:1302.6720 [INSPIRE].
  48. [48]
    Y. Li and S.-S. Liu, Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Phys. Lett. B 706 (2012) 406 [arXiv:1110.5795] [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: models and Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Giunti and M. Laveder, Implications of 3 + 1 Short-Baseline Neutrino Oscillations, Phys. Lett. B 706 (2011) 200 [arXiv:1111.1069] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Giusarma et al., Constraints on massive sterile neutrino species from current and future cosmological data, Phys. Rev. D 83 (2011) 115023 [arXiv:1102.4774] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results, JHEP 08 (2010) 117 [arXiv:1006.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Archidiacono, N. Fornengo, C. Giunti and A. Melchiorri, Testing 3 + 1 and 3 + 2 neutrino mass models with cosmology and short baseline experiments, Phys. Rev. D 86 (2012) 065028 [arXiv:1207.6515] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T.D. Jacques, L.M. Krauss and C. Lunardini, Additional Light Sterile Neutrinos and Cosmology, arXiv:1301.3119 [INSPIRE].
  56. [56]
    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  57. [57]
    G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y. Wong, Sterile neutrinos with eV masses in cosmology: how disfavoured exactly?, JCAP 09 (2011) 034 [arXiv:1108.4136] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Joudaki, K.N. Abazajian and M. Kaplinghat, Are Light Sterile Neutrinos Preferred or Disfavored by Cosmology?, Phys. Rev. D 87 (2013) 065003 [arXiv:1208.4354] [INSPIRE].ADSGoogle Scholar
  60. [60]
    G. Karagiorgi et al., Leptonic CP-violation studies at MiniBooNE in the (3 + 2) sterile neutrino oscillation hypothesis, Phys. Rev. D 75 (2007) 013011 [Erratum ibid. D 80 (2009) 099902] [hep-ph/0609177] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Goswami and W. Rodejohann, MiniBooNE results and neutrino schemes with 2 sterile neutrinos: possible mass orderings and observables related to neutrino masses, JHEP 10 (2007) 073 [arXiv:0706.1462] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Blennow and E. Fernandez-Martinez, Parametrization of Seesaw Models and Light Sterile Neutrinos, Phys. Lett. B 704 (2011) 223 [arXiv:1107.3992] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Fan and P. Langacker, Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies, JHEP 04 (2012) 083 [arXiv:1201.6662] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3 + 2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    D. Hernandez and A.Y. Smirnov, Active to sterile neutrino oscillations: coherence and MINOS results, Phys. Lett. B 706 (2012) 360 [arXiv:1105.5946] [INSPIRE].ADSGoogle Scholar
  66. [66]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Kuvshinnikov, L. Mikaelyan, S. Nikolaev, M. Skorokhvatov and A. Etenko, Measuring the anti-electron-neutrino + pn + e+ cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].ADSGoogle Scholar
  68. [68]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  69. [69]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].ADSGoogle Scholar
  70. [70]
    H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  71. [71]
    G. Vidyakin et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  72. [72]
    G. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  73. [73]
    Z. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Afonin et al., A study of the reaction \( {{\overline{\nu}}_e}+p\to {e^{+}}+n \) on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].Google Scholar
  75. [75]
    F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001 [hep-ex/0107009] [INSPIRE].ADSGoogle Scholar
  76. [76]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [INSPIRE].ADSGoogle Scholar
  77. [77]
    D. Dwyer, Daya Bay results, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.Google Scholar
  78. [78]
    KamLAND collaboration, A. Gando et al., Constraints on θ13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].ADSGoogle Scholar
  79. [79]
    W. Grimus and T. Schwetz, Four neutrino mass schemes and the likelihood of (3 + 1) mass spectra, Eur. Phys. J. C 20 (2001) 1 [hep-ph/0102252] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021, 2011 partial update for the 2012 edition [INSPIRE].
  82. [82]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  83. [83]
    F.E. Wietfeldt and G.L. Greene, Colloquium: the neutron lifetime, Rev. Mod. Phys. 83 (2011) 1173.ADSCrossRefGoogle Scholar
  84. [84]
    GALLEX collaboration, W. Hampel et al., Final results of the Cr-51 neutrino source experiments in GALLEX, Phys. Lett. B 420 (1998) 114 [INSPIRE].ADSGoogle Scholar
  85. [85]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSGoogle Scholar
  86. [86]
    SAGE collaboration, J. Abdurashitov et al., Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source, Phys. Rev. C 59 (1999) 2246 [hep-ph/9803418] [INSPIRE].ADSGoogle Scholar
  87. [87]
    J. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].ADSGoogle Scholar
  88. [88]
    J.N. Bahcall, Gallium solar neutrino experiments: absorption cross-sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [INSPIRE].ADSGoogle Scholar
  89. [89]
    D. Frekers et al., The Ga-71(He-3, t) reaction and the low-energy neutrino response, Phys. Lett. B 706 (2011) 134 [INSPIRE].ADSGoogle Scholar
  90. [90]
    C. Giunti, M. Laveder, Y. Li, Q. Liu and H. Long, Update of Short-Baseline Electron Neutrino and Antineutrino Disappearance, Phys. Rev. D 86 (2012) 113014 [arXiv:1210.5715] [INSPIRE].ADSGoogle Scholar
  91. [91]
    LSND collaboration, L. Auerbach et al., Measurements of charged current reactions of νe on 12-C, Phys. Rev. C 64 (2001) 065501 [hep-ex/0105068] [INSPIRE].ADSGoogle Scholar
  92. [92]
    B. Armbruster et al., KARMEN limits on electron-neutrino to tau-neutrino oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414 [hep-ex/9801007] [INSPIRE].ADSGoogle Scholar
  93. [93]
    M. Fukugita, Y. Kohyama and K. Kubodera, Neutrino reaction cross-sections on C-12 target, Phys. Lett. B 212 (1988) 139 [INSPIRE].ADSGoogle Scholar
  94. [94]
    J. Reichenbacher, Final KARMEN results on neutrino oscillations and neutrino nucleus interactions in the energy regime of supernovae, Ph.D. thesis, Univ. Karlsruhe, Germany.Google Scholar
  95. [95]
    J. Conrad and M. Shaevitz, Limits on Electron Neutrino Disappearance from the KARMEN and LSND νe - Carbon Cross section Data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].ADSGoogle Scholar
  96. [96]
    A. Bandyopadhyay and S. Choubey, The (3 + 2) neutrino mass spectrum and double CHOOZ, arXiv:0707.2481 [INSPIRE].
  97. [97]
    K. Bora, D. Dutta and P. Ghoshal, Probing Sterile Neutrino Parameters with Double CHOOZ, Daya Bay and RENO, JHEP 12 (2012) 025 [arXiv:1206.2172] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    C. Giunti and M. Laveder, Effect of the reactor antineutrino anomaly on the first Double-CHOOZ results, Phys. Rev. D 85 (2012) 031301 [arXiv:1111.5211] [INSPIRE].ADSGoogle Scholar
  99. [99]
    B. Bhattacharya, A.M. Thalapillil and C.E. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE].ADSGoogle Scholar
  100. [100]
    C. Zhang, X. Qian and P. Vogel, Reactor Antineutrino Anomaly with known θ13, arXiv:1303.0900 [INSPIRE].
  101. [101]
    C. Giunti and Y. Li, Matter Effects in Active-Sterile Solar Neutrino Oscillations, Phys. Rev. D 80 (2009) 113007 [arXiv:0910.5856] [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Palazzo, Testing the very-short-baseline neutrino anomalies at the solar sector, Phys. Rev. D 83 (2011) 113013 [arXiv:1105.1705] [INSPIRE].ADSGoogle Scholar
  103. [103]
    A. Palazzo, An estimate of θ14 independent of the reactor antineutrino flux determinations, Phys. Rev. D 85 (2012) 077301 [arXiv:1201.4280] [INSPIRE].ADSGoogle Scholar
  104. [104]
    C. Kraus, A. Singer, K. Valerius and C. Weinheimer, Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment, Eur. Phys. J. C 73 (2013) 2323 [arXiv:1210.4194] [INSPIRE].ADSGoogle Scholar
  105. [105]
    A. Belesev et al., An upper limit on additional neutrino mass eigenstate in 2 to 100 eV region fromTroitsk nu-massdata, JETP Lett. 97 (2013) 67 [arXiv:1211.7193] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    C. Giunti, M. Laveder, Y. Li and H. Long, Short-Baseline Electron Neutrino Oscillation Length After Troitsk, Phys. Rev. D 87 (2013) 013004 [arXiv:1212.3805] [INSPIRE].ADSGoogle Scholar
  107. [107]
    A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].CrossRefGoogle Scholar
  108. [108]
    F. Dydak et al., A Search for Muon-neutrino Oscillations in the Delta m 2 Range 0.3-eV 2 to 90-eV 2, Phys. Lett. B 134 (1984) 281 [INSPIRE].ADSGoogle Scholar
  109. [109]
    S.M. Bilenky, C. Giunti, W. Grimus and T. Schwetz, Four neutrino mass spectra and the Super-Kamiokande atmospheric up-down asymmetry, Phys. Rev. D 60 (1999) 073007 [hep-ph/9903454] [INSPIRE].ADSGoogle Scholar
  110. [110]
    H. Nunokawa, O. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].ADSGoogle Scholar
  111. [111]
    S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    V. Barger, Y. Gao and D. Marfatia, Is there evidence for sterile neutrinos in IceCube data?, Phys. Rev. D 85 (2012) 011302 [arXiv:1109.5748] [INSPIRE].ADSGoogle Scholar
  114. [114]
    S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].ADSGoogle Scholar
  115. [115]
    A. Esmaili, F. Halzen and O. Peres, Constraining Sterile Neutrinos with AMANDA and IceCube Atmospheric Neutrino Data, JCAP 11 (2012) 041 [arXiv:1206.6903] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    NOMAD collaboration, P. Astier et al., Final NOMAD results on νμ → ντ and νe → ντ oscillations including a new search for tau-neutrino appearance using hadronic tau decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].ADSGoogle Scholar
  117. [117]
    CHORUS collaboration, E. Eskut et al., Final results on νμ → ντ oscillation from the CHORUS experiment, Nucl. Phys. B 793 (2008) 326 [arXiv:0710.3361] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations muon-anti-neutrino to electron-anti-neutrino from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].ADSGoogle Scholar
  119. [119]
    NOMAD collaboration, P. Astier et al., Search for νμ → νe oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].ADSGoogle Scholar
  120. [120]
    S. Palomares-Ruiz, S. Pascoli and T. Schwetz, Explaining LSND by a decaying sterile neutrino, JHEP 09 (2005) 048 [hep-ph/0505216] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    Opera collaboration, N. Agafonova et al., Search for νμ → νe oscillations with the OPERA experiment in the CNGS beam, arXiv:1303.3953 [INSPIRE].
  122. [122]
    MiniBooNE collaboration, A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    M. Martini, M. Ericson and G. Chanfray, Neutrino energy reconstruction problems and neutrino oscillations, Phys. Rev. D 85 (2012) 093012 [arXiv:1202.4745] [INSPIRE].ADSGoogle Scholar
  124. [124]
    M. Martini, M. Ericson and G. Chanfray, Energy reconstruction effects in neutrino oscillation experiments and implications for the analysis, Phys. Rev. D 87 (2013) 013009 [arXiv:1211.1523] [INSPIRE].ADSGoogle Scholar
  125. [125]
    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].ADSGoogle Scholar
  126. [126]
    B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: results for the 20022007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].ADSGoogle Scholar
  128. [128]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].ADSGoogle Scholar
  129. [129]
    Super-Kamiokande collaboration, J. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].ADSGoogle Scholar
  130. [130]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].ADSGoogle Scholar
  131. [131]
    M. Smy, Super-Kamiokandes Solar ν Results, talk given at Neutrino2012, Kyoto, Japan, 3–9 June 2012.Google Scholar
  132. [132]
    SNO collaboration, B. Aharmim et al., Measurement of the νe and total B-8 solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].ADSGoogle Scholar
  133. [133]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].ADSGoogle Scholar
  134. [134]
    SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, arXiv:1109.0763 [INSPIRE].
  136. [136]
    G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].ADSGoogle Scholar
  138. [138]
    H. Long, Y. Li and C. Giunti, CP-violating Phases in Active-Sterile Solar Neutrino Oscillations, arXiv:1304.2207 [INSPIRE].
  139. [139]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].ADSCrossRefGoogle Scholar
  141. [141]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].ADSGoogle Scholar
  142. [142]
    M. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297.ADSCrossRefGoogle Scholar
  144. [144]
    M. Blennow and T. Ohlsson, Approximative two-flavor framework for neutrino oscillations with non-standard interactions, Phys. Rev. D 78 (2008) 093002 [arXiv:0805.2301] [INSPIRE].ADSGoogle Scholar
  145. [145]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    C. Rubbia et al., Underground operation of the ICARUS T600 LAr-TPC: first results, 2011 JINST 6 P07011 [arXiv:1106.0975] [INSPIRE].
  148. [148]
    M. Bonesini and A. Guglielmi, Hadroproduction experiments for precise neutrino beam calculations, Phys. Rept. 433 (2006) 65 [INSPIRE].ADSCrossRefGoogle Scholar
  149. [149]
    SciBooNE collaboration, G. Cheng et al., Measurement of K + production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector, Phys. Rev. D 84 (2011) 012009 [arXiv:1105.2871] [INSPIRE].ADSGoogle Scholar
  150. [150]
    P. Vahle, Results from MINOS, talk given on behalf of the MINOS Collaboration at Neutrino 2010 conference, Athens, Greece, 2010 [slides].
  151. [151]
    MINOS collaboration, P. Adamson et al., Measurement of the neutrino mass splitting and flavor mixing by MINOS, Phys. Rev. Lett. 106 (2011) 181801 [arXiv:1103.0340] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    A. Sousa, private communication (2011).Google Scholar
  153. [153]
    M. Bishai, private communication (2011).Google Scholar
  154. [154]
    M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrinos with super-kamiokande, UMI-99-23965.Google Scholar
  155. [155]
    E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].ADSGoogle Scholar
  156. [156]
    C. Andreopoulos et al., The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Joachim Kopp
    • 1
  • Pedro A. N. Machado
    • 2
    • 3
  • Michele Maltoni
    • 4
  • Thomas Schwetz
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Institut de Physique Théorique, CEA-SaclayGif-sur-YvetteFrance
  4. 4.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations