What if \( \mathrm{BR}\left( {h\to \mu \mu } \right)/\mathrm{BR}\left( {h\to \tau \tau } \right)\ne m_{\mu}^2/m_{\tau}^2 \) ?

  • Avital Dery
  • Aielet Efrati
  • Yonit Hochberg
  • Yosef Nir


Measurements of the Yukawa couplings of the recently discovered boson h to fermion pairs will provide a new arena for studying flavor physics. We analyze the lessons that can be learned by measuring the h decay rates into the charged lepton pairs, τ +τ , μ + μ and τ ± μ . We demonstrate how this set of measurements can distinguish in principle between various classes of flavor models such as natural flavor conservation, minimal flavor violation, and Froggatt-Nielsen symmetry.


Higgs Physics Beyond Standard Model 


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the Higgs, arXiv:1206.4201 [INSPIRE].
  4. [4]
    ATLAS collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127 (2012).
  5. [5]
    ATLAS collaboration, Search for the Standard Model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  6. [6]
    CMS collaboration, Higgs to tau tau (SM) (HCP), CMS-PAS-HIG-12-043 (2012).
  7. [7]
    T. Han and D. Marfatia, hμτ at hadron colliders, Phys. Rev. Lett. 86 (2001) 1442 [hep-ph/0008141] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    U. Cotti, L. Diaz-Cruz, C. Pagliarone and E. Vataga, Search for the lepton flavor violating Higgs decay H → τ μ at hadron colliders, eConf C 010630 (2001) P102 [hep-ph/0111236] [INSPIRE].
  9. [9]
    K.A. Assamagan, A. Deandrea and P.-A. Delsart, Search for the lepton flavor violating decay A 0 /H 0 → τ ± μ at hadron colliders, Phys. Rev. D 67 (2003) 035001 [hep-ph/0207302] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Arcelli, Search for H/Aμμ and τ μ at the LHC, Eur. Phys. J. C 33 (2004) S726 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Davidson and P. Verdier, LHC sensitivity to the decay h → τ ± mu , Phys. Rev. D 86 (2012) 111701 [arXiv:1211.1248] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Arhrib, Y. Cheng and O.C. Kong, A Comprehensive Analysis on Lepton Flavor Violating Higgs to μτ + τ m¯u Decay in Supersymmetry without R Parity, Phys. Rev. D 87 (2013) 015025 [arXiv:1210.8241] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C.-W. Chiang, T. Nomura and J. Tandean, Effects of Family Nonuniversal ZBoson on Leptonic Decays of Higgs and Weak Bosons, arXiv:1302.2894 [INSPIRE].
  17. [17]
    A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  19. [19]
    D.Y. Bardin, B. Vilensky and P.K. Khristova, Calculation of the Higgs boson decay width into fermion pairs, Sov. J. Nucl. Phys. 53 (1991) 152 [Yad. Fiz. 53 (1991) 240] [INSPIRE].Google Scholar
  20. [20]
    A. Dabelstein and W. Hollik, Electroweak corrections to the fermionic decay width of the standard Higgs boson, Z. Phys. C 53 (1992) 507 [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.A. Kniehl, Radiative corrections for \( H\to f\overline{f}\left( \gamma \right) \) in the standard model, Nucl. Phys. B 376 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B.A. Kniehl, Higgs phenomenology at one loop in the standard model, Phys. Rept. 240 (1994) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(Bs,d to μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Arason, D. Castano, B. Keszthelyi, S. Mikaelian et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].ADSGoogle Scholar
  26. [26]
    Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  27. [27]
    ATLAS collaboration, Search for the neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 02 (2013) 095 [arXiv:1211.6956] [INSPIRE].ADSGoogle Scholar
  28. [28]
    CMS collaboration, Search for Neutral MSSM Higgs Bosons in the mu+mu- final state with the CMS experiment in pp Collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-HIG-12-011 (2012).
  29. [29]
    T. Plehn and D.L. Rainwater, Higgs decays to muons in weak boson fusion, Phys. Lett. B 520 (2001) 108 [hep-ph/0107180] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Cranmer and T. Plehn, Maximum significance at the LHC and Higgs decays to muons, Eur. Phys. J. C 51 (2007) 415 [hep-ph/0605268] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  32. [32]
    ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS (Update), ATL-PHYS-PUB-2012-004 (2012).
  33. [33]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  34. [34]
    E. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Grossman and Y. Nir, Lepton mass matrix models, Nucl. Phys. B 448 (1995) 30 [hep-ph/9502418] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Avital Dery
    • 1
  • Aielet Efrati
    • 1
  • Yonit Hochberg
    • 1
  • Yosef Nir
    • 1
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations