Advertisement

Determination of low-energy constants of Wilson chiral perturbation theory

  • Gregorio Herdoíza
  • Karl Jansen
  • Chris Michael
  • Konstantin Ottnad
  • Carsten Urbach
  • The ETM collaboration
Open Access
Article

Abstract

By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants \( W_6^{\prime } \), \( W_8^{\prime } \) and their linear combination c 2. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

Keywords

Lattice QCD Chiral Lagrangians 

References

  1. [1]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  2. [2]
    L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056 [hep-lat/0610059] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [INSPIRE].ADSGoogle Scholar
  4. [4]
    Hadron Spectrum collaboration, H.-W. Lin et al., First results from 2 + 1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass, Phys. Rev. D 79 (2009) 034502 [arXiv:0810.3588] [INSPIRE].ADSGoogle Scholar
  5. [5]
    BMW collaboration, S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    PACS-CS collaboration, S. Aoki et al., Physical Point Simulation in 2 + 1 Flavor Lattice QCD, Phys. Rev. D 81 (2010) 074503 [arXiv:0911.2561] [INSPIRE].ADSGoogle Scholar
  7. [7]
    ETM collaboration, R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    BMW collaboration, S. Dürr et al., Lattice QCD at the physical point: Simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    QCDSF-UKQCD collaboration, W. Bietenholz et al., Flavour blindness and patterns of flavour symmetry breaking in lattice simulations of up, down and strange quarks, Phys. Rev. D 84 (2011) 054509 [arXiv:1102.5300] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.R. Sharpe and J. Singleton, Robert L., Spontaneous flavor and parity breaking with Wilson fermions, Phys. Rev. D 58 (1998) 074501 [hep-lat/9804028] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Aoki, New Phase Structure for Lattice QCD with Wilson Fermions, Phys. Rev. D 30 (1984) 2653 [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Creutz, Wilson fermions at finite temperature, hep-lat/9608024 [INSPIRE].
  13. [13]
    S. Aoki and A. Gocksch, Spontaneous breaking of flavor symmetry and parity in lattice QCD with Wilson fermions, Phys. Rev. D 45 (1992) 3845 [INSPIRE].ADSGoogle Scholar
  14. [14]
    T. Blum et al., QCD thermodynamics with Wilson quarks at large kappa, Phys. Rev. D 50 (1994) 3377 [hep-lat/9404006] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Aoki, On the phase structure of QCD with Wilson fermions, Prog. Theor. Phys. Suppl. 122 (1996) 179 [hep-lat/9509008] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Aoki, T. Kaneda and A. Ukawa, Structure of critical lines in quenched lattice QCD with the Wilson quark action, Phys. Rev. D 56 (1997) 1808 [hep-lat/9612019] [INSPIRE].ADSGoogle Scholar
  17. [17]
    JLQCD collaboration, S. Aoki et al., Nontrivial phase structure of N f = 3 QCD with O(a) improved Wilson fermion at zero temperature, Nucl. Phys. Proc. Suppl. 106 (2002) 263 [hep-lat/0110088] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E.-M. Ilgenfritz, W. Kerler, M. Muller-Preussker, A. Sternbeck and H. Stuben, A Numerical reinvestigation of the Aoki phase with N f = 2Wilson fermions at zero temperature, Phys. Rev. D 69 (2004) 074511 [hep-lat/0309057] [INSPIRE].ADSGoogle Scholar
  19. [19]
    JLQCD collaboration, S. Aoki et al., Bulk first-order phase transition in three-flavor lattice QCD with O(a)-improved Wilson fermion action at zero temperature, Phys. Rev. D 72 (2005) 054510 [hep-lat/0409016] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Farchioni et al., Twisted mass quarks and the phase structure of lattice QCD, Eur. Phys. J. C 39 (2005) 421 [hep-lat/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Farchioni et al., The Phase structure of lattice QCD with Wilson quarks and renormalization group improved gluons, Eur. Phys. J. C 42 (2005) 73 [hep-lat/0410031] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Farchioni et al., Lattice spacing dependence of the first order phase transition for dynamical twisted mass fermions, Phys. Lett. B 624 (2005) 324 [hep-lat/0506025] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. Farchioni et al., Numerical simulations with two flavors of twisted-mass Wilson quarks and DBW2 gauge action, Eur. Phys. J. C 47 (2006) 453 [hep-lat/0512017] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Chiarappa et al., Numerical simulation of QCD with u, d, s and c quarks in the twisted-mass Wilson formulation, Eur. Phys. J. C 50 (2007) 373 [hep-lat/0606011] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Deuzeman, U. Wenger and J. Wuilloud, Spectral properties of the Wilson Dirac operator in the ϵ-regime, JHEP 12 (2011) 109 [arXiv:1110.4002] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Damgaard, U. Heller and K. Splittorff, Finite-Volume Scaling of the Wilson-Dirac Operator Spectrum, Phys. Rev. D 85 (2012) 014505 [arXiv:1110.2851] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Damgaard, U. Heller and K. Splittorff, New Ways to Determine Low-Energy Constants with Wilson Fermions, Phys. Rev. D 86 (2012) 094502 [arXiv:1206.4786] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P.H. Damgaard, U.M. Heller and K. Splittorff, Wilson chiral perturbation theory, Wilson-Dirac operator eigenvalues and clover improvement, arXiv:1301.3099 [INSPIRE].
  29. [29]
    P. Damgaard, K. Splittorff and J. Verbaarschot, Microscopic Spectrum of the Wilson Dirac Operator, Phys. Rev. Lett. 105 (2010) 162002 [arXiv:1001.2937] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    G. Akemann, P. Damgaard, K. Splittorff and J. Verbaarschot, Spectrum of the Wilson Dirac Operator at Finite Lattice Spacings, Phys. Rev. D 83 (2011) 085014 [arXiv:1012.0752] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Splittorff and J. Verbaarschot, The Wilson Dirac Spectrum for QCD with Dynamical Quarks, Phys. Rev. D 84 (2011) 065031 [arXiv:1105.6229] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K. Splittorff and J. Verbaarschot, Progress on the Microscopic Spectrum of the Dirac Operator for QCD with Wilson Fermions, PoS(LATTICE 2011) 113 [arXiv:1112.0377] [INSPIRE].
  33. [33]
    G. Akemann and T. Nagao, Random Matrix Theory for the Hermitian Wilson Dirac Operator and the chGUE-GUE Transition, JHEP 10 (2011) 060 [arXiv:1108.3035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    K. Splittorff and J. Verbaarschot, The Microscopic Twisted Mass Dirac Spectrum, Phys. Rev. D 85 (2012) 105008 [arXiv:1201.1361] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Kieburg, K. Splittorff and J. Verbaarschot, The Realization of the Sharpe-Singleton Scenario, Phys. Rev. D 85 (2012) 094011 [arXiv:1202.0620] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Akemann and A. Ipsen, Individual Eigenvalue Distributions for the Wilson Dirac Operator, JHEP 04 (2012) 102 [arXiv:1202.1241] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K. Splittorff, Chiral Dynamics With Wilson Fermions, PoS(LATTICE 2012) 018 [arXiv:1211.1803] [INSPIRE].
  38. [38]
    S. Necco and A. Shindler, Spectral density of the Hermitean Wilson Dirac operator: a NLO computation in chiral perturbation theory, JHEP 04 (2011) 031 [arXiv:1101.1778] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Necco and A. Shindler, On the spectral density of the Wilson operator, PoS(LATTICE 2011) 250 [arXiv:1108.1950] [INSPIRE].
  40. [40]
    S. Necco and A. Shindler, Corrections to the Banks-Casher relation with Wilson quarks, arXiv:1302.5595 [INSPIRE].
  41. [41]
    S. Aoki, O. Bär and B. Biedermann, Pion scattering in Wilson chiral perturbation theory, Phys. Rev. D 78 (2008) 114501 [arXiv:0806.4863] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F. Bernardoni, J. Bulava and R. Sommer, Determination of the Wilson ChPT low energy constant c 2, PoS(LATTICE 2011) 095 [arXiv:1111.4351] [INSPIRE].
  43. [43]
    M.T. Hansen and S.R. Sharpe, Determining low-energy constants in partially quenched Wilson chiral perturbation theory, Phys. Rev. D 85 (2012) 054504 [arXiv:1112.3998] [INSPIRE].ADSGoogle Scholar
  44. [44]
    O. Bär, G. Rupak and N. Shoresh, Simulations with different lattice Dirac operators for valence and sea quarks, Phys. Rev. D 67 (2003) 114505 [hep-lat/0210050] [INSPIRE].ADSGoogle Scholar
  45. [45]
    O. Bär, G. Rupak and N. Shoresh, Chiral perturbation theory at O(a 2) for lattice QCD, Phys. Rev. D 70 (2004) 034508 [hep-lat/0306021] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Cichy, V. Drach, E. Garcia-Ramos, G. Herdoiza and K. Jansen, Overlap valence quarks on a twisted mass sea: a case study for mixed action Lattice QCD, Nucl. Phys. B 869 (2013) 131 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.T. Hansen and S.R. Sharpe, Constraint on the Low Energy Constants of Wilson Chiral Perturbation Theory, Phys. Rev. D 85 (2012) 014503 [arXiv:1111.2404] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Golterman, Applications of chiral perturbation theory to lattice QCD, arXiv:0912.4042 [INSPIRE].
  49. [49]
    G. Münster, On the phase structure of twisted mass lattice QCD, JHEP 09 (2004) 035 [hep-lat/0407006] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    L. Scorzato, Pion mass splitting and phase structure in twisted mass QCD, Eur. Phys. J. C 37 (2004) 445 [hep-lat/0407023] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.R. Sharpe and J.M. Wu, The phase diagram of twisted mass lattice QCD, Phys. Rev. D 70 (2004) 094029 [hep-lat/0407025] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Colangelo, U. Wenger and J.M. Wu, Twisted mass finite volume effects, Phys. Rev. D 82 (2010) 034502 [arXiv:1003.0847] [INSPIRE].ADSGoogle Scholar
  53. [53]
    O. Bär, Chiral logs in twisted mass lattice QCD with large isospin breaking, Phys. Rev. D 82 (2010) 094505 [arXiv:1008.0784] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Ueda and S. Aoki, Chiral perturbation theory for twisted mass QCD at small quark mass, arXiv:1109.0073 [INSPIRE].
  55. [55]
    G. Münster and T. Sudmann, Twisted mass chiral perturbation theory for 2 + 1 + 1 quark flavours, JHEP 04 (2011) 116 [arXiv:1103.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].Google Scholar
  57. [57]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    XLF collaboration, K. Jansen, A. Shindler, C. Urbach and I. Wetzorke, Scaling test for Wilson twisted mass QCD, Phys. Lett. B 586 (2004) 432 [hep-lat/0312013] [INSPIRE].ADSGoogle Scholar
  59. [59]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Light quarks with twisted mass fermions, Phys. Lett. B 619 (2005) 184 [hep-lat/0503031] [INSPIRE].ADSGoogle Scholar
  60. [60]
    XLF collaboration, K. Jansen, M. Papinutto, A. Shindler, C. Urbach and I. Wetzorke, Quenched scaling of Wilson twisted mass fermions, JHEP 09 (2005) 071 [hep-lat/0507010] [INSPIRE].Google Scholar
  61. [61]
    A.M. Abdel-Rehim, R. Lewis and R. Woloshyn, Spectrum of quenched twisted mass lattice QCD at maximal twist, Phys. Rev. D 71 (2005) 094505 [hep-lat/0503007] [INSPIRE].ADSGoogle Scholar
  62. [62]
    ETM collaboration, C. Urbach, Lattice QCD with two light Wilson quarks and maximally twisted mass, PoS(LATTICE 2007) 022 [arXiv:0710.1517] [INSPIRE].
  63. [63]
    ETM collaboration, P. Dimopoulos, R. Frezzotti, G. Herdoiza, C. Urbach and U. Wenger, Scaling and low energy constants in lattice QCD with N f = 2 maximally twisted Wilson quarks, PoS(LATTICE 2007) 102 [arXiv:0710.2498] [INSPIRE].
  64. [64]
    ETM collaboration, C. Alexandrou et al., Light baryon masses with dynamical twisted mass fermions, Phys. Rev. D 78 (2008) 014509 [arXiv:0803.3190] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ETM collaboration, R. Baron et al., Light Meson Physics from Maximally Twisted Mass Lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    ETM collaboration, V. Drach, K. Jansen, J. Carbonell, M. Papinutto and C. Alexandrou, Low lying baryon spectrum with N f = 2 + 1 + 1 dynamical twisted quarks, PoS(LATTICE 2010) 101 [arXiv:1012.3861] [INSPIRE].
  67. [67]
    G. Herdoiza, Towards Four-Flavour Dynamical Simulations, PoS(LATTICE 2010) 010 [arXiv:1103.1523] [INSPIRE].
  68. [68]
    XLF collaboration, K. Jansen et al., Flavor breaking effects of Wilson twisted mass fermions, Phys. Lett. B 624 (2005) 334 [hep-lat/0507032] [INSPIRE].ADSGoogle Scholar
  69. [69]
    R. Frezzotti and G. Rossi, O(a 2) cutoff effects in Wilson fermion simulations, PoS(LAT 2007) 277 [arXiv:0710.2492] [INSPIRE].
  70. [70]
    ETM collaboration, P. Dimopoulos, R. Frezzotti, C. Michael, G. Rossi and C. Urbach, O(a 2) cutoff effects in lattice Wilson fermion simulations, Phys. Rev. D 81 (2010) 034509 [arXiv:0908.0451] [INSPIRE].ADSGoogle Scholar
  71. [71]
    ETM collaboration, C. Michael and C. Urbach, Neutral mesons and disconnected diagrams in Twisted Mass QCD, PoS(LAT 2007) 122 [arXiv:0709.4564] [INSPIRE].
  72. [72]
    ETM collaboration, P. Boucaud et al., Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Frezzotti and G. Rossi, Chirally improving Wilson fermions. II. Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    R. Frezzotti and G. Rossi, Twisted mass lattice QCD with mass nondegenerate quarks, Nucl. Phys. Proc. Suppl. 128 (2004) 193 [hep-lat/0311008] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    K. Osterwalder and E. Seiler, Gauge Field Theories on the Lattice, Annals Phys. 110 (1978) 440 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].ADSGoogle Scholar
  77. [77]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P. Weisz, Continuum limit improved lattice action for pure Yang-Mills theory. 1., Nucl. Phys. B 212 (1983) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    P. Weisz and R. Wohlert, Continuum limit improved lattice action for pure Yang-Mills theory. 2., Nucl. Phys. B 236 (1984) 397 [Erratum ibid. B 247 (1984) 544] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: two-dimensional nonlinear O(N) σ-model, Nucl. Phys. B 258 (1985) 141 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Y. Iwasaki, K. Kanaya, T. Kaneko and T. Yoshie, Scaling in SU(3) pure gauge theory with a renormalization group improved action, Phys. Rev. D 56 (1997) 151 [hep-lat/9610023] [INSPIRE].ADSGoogle Scholar
  82. [82]
    Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved Lattice Action. II. Four-dimensional non-Abelian SU(N) gauge model, arXiv:1111.7054 [INSPIRE].
  83. [83]
    ETM collaboration, R. Baron et al., Light hadrons from N f = 2 + 1 + 1 dynamical twisted mass fermions, PoS(LATTICE 2010) 123 [arXiv:1101.0518] [INSPIRE].
  84. [84]
    ETM collaboration, M. Constantinou et al., B K -parameter from N f = 2 twisted mass lattice QCD, Phys. Rev. D 83 (2011) 014505 [arXiv:1009.5606] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ETM collaboration, F. Farchioni et al., Pseudoscalar decay constants from N f = 2 + 1 + 1 twisted mass lattice QCD, PoS(LATTICE 2010) 128 [INSPIRE].
  86. [86]
    ETM collaboration, B. Blossier et al., Average up/down, strange and charm quark masses with N f = 2 twisted mass lattice QCD, Phys. Rev. D 82 (2010) 114513 [arXiv:1010.3659] [INSPIRE].ADSGoogle Scholar
  87. [87]
    K. Cichy, G. Herdoiza and K. Jansen, Continuum Limit of Overlap Valence Quarks on a Twisted Mass Sea, Nucl. Phys. B 847 (2011) 179 [arXiv:1012.4412] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    P. Dimopoulos, H. Simma and A. Vladikas, Quenched B K -parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects, JHEP 07 (2009) 007 [arXiv:0902.1074] [INSPIRE].Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Gregorio Herdoíza
    • 1
    • 2
  • Karl Jansen
    • 3
    • 4
  • Chris Michael
    • 5
  • Konstantin Ottnad
    • 6
  • Carsten Urbach
    • 6
  • The ETM collaboration
  1. 1.PRISMA Cluster of Excellence, Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Departamento de Física Teórica and Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  3. 3.NIC, DESYZeuthenGermany
  4. 4.Department of PhysicsUniversity of CyprusNicosiaCyprus
  5. 5.Theoretical Physics Division, Department of Mathematical SciencesThe University of LiverpoolLiverpoolU.K.
  6. 6.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations