Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation

  • Xiao Nan Gao
  • S. Y. LouEmail author
  • Xiao Yan Tang


Assuming that there exist at least two fermionic parameters, the classical \( \mathcal{N}=1 \) supersymmetric Korteweg-de Vries (SKdV) system can be transformed to some coupled bosonic systems. The boson fields in the bosonized SKdV (BSKdV) systems are defined on even Grassmann algebra. Due to the intrusion of other Grassmann parameters, the BSKdV systems are different from the usual non-supersymmetric integrable systems, and many more abundant solution structures can be unearthed. With the help of the singularity analysis, the Painlevé property of the BSKdV system is proved and a Bäcklund transformation (BT) is found. The BT related nonlocal symmetry, we call it as residual symmetry, is used to find symmetry reduction solutions of the BSKdV system. Hinted from the symmetry reduction solutions, a more generalized but much simpler method is established to find exact solutions of the BSKdV and then the SKdV systems, which actually can be applied to any fermionic systems.


Integrable Equations in Physics Integrable Hierarchies Supersymmetric Effective Theories 


  1. [1]
    K. Efetov, C. Pepin and H. Meier, Exact bosonization for an interacting Fermi gas in arbitrary dimensions, Phys. Rev. Lett. 103 (2009) 186403 [arXiv:0907.3243] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization and strongly correlated systems, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  3. [3]
    T. Giamarchi, Quantum physics in one dimension, Oxford University Press, Oxford U.K. (2003).CrossRefGoogle Scholar
  4. [4]
    A. Luther, Tomonaga fermions and the Dirac equation in three dimensions, Phys. Rev. B 19 (1979) 320.ADSGoogle Scholar
  5. [5]
    M. Plyushchay, Deformed Heisenberg algebra, fractional spin fields and supersymmetry without fermions, Annals Phys. 245 (1996) 339 [hep-th/9601116] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [6]
    F. Correa and M.S. Plyushchay, Hidden supersymmetry in quantum bosonic systems, Annals Phys. 322 (2007) 2493 [hep-th/0605104] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    O. Oguz and D. Yazici, Multiple local Lagrangians for n-component super-Korteweg-de Vries-type bi-hamiltonian systems, Int. J. Mod. Phys. A 25 (2010) 1069 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    B. Kupershmidt, A super Korteweg-de Vries equation: an integrable system, Phys. Lett. A 102 (1984) 213 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    K. Tian and Q. Liu, A supersymmetric Sawada-Kotera equation, Phys. Lett. A 373 (2009) 1807.MathSciNetADSGoogle Scholar
  10. [10]
    A.J. Hariton, Supersymmetric extension of the scalar Born-Infeld equation, J. Phys. A 39 (2006) 7105.MathSciNetADSGoogle Scholar
  11. [11]
    P. Labelle and P. Mathieu, A new N = 2 supersymmetric Korteweg-de Vries equation, J. Math. Phys. 32 (1991) 923 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    C. Laberge and P. Mathieu, N = 2 superconformal algebra and integrable O(2) fermionic extensions of the Korteweg-de Vries equation, Phys. Lett. B 215 (1988) 718 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M. Saha and A. Chowdhury, Supersymmetric integrable systems in (2 + 1)-dimensions and their Baecklund transformation, Int. J. Theor. Phys. 38 (1999) 2037 [INSPIRE].zbMATHCrossRefGoogle Scholar
  14. [14]
    X.N. Gao and S.Y. Lou, Bosonization of supersymmetric KdV equation Phys. Lett. B 707 (2012) 209.MathSciNetADSGoogle Scholar
  15. [15]
    N. Manton, Deconstructing supersymmetry, J. Math. Phys. 40 (1999) 736 [hep-th/9806077] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    R. Heumann and N. Manton, Classical supersymmetric mechanics, Annals Phys. 284 (2000) 52 [hep-th/0001155] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    C. Devchand and J. Schiff, The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group, J. Math. Phys. 42 (2001) 260 [solv-int/9811016] [INSPIRE].
  18. [18]
    Y.C. Hon and E.G. Fan, Super quasiperiodic wave solutions and asymptotic analysis for N = 1 supersymmetric KdV-type equations, Theoret. Mat. Fiz. 166 (2011) 366.Google Scholar
  19. [19]
    E.G. Fan and Y.C. Hon, Quasi-periodic wave solutions of mathcal N = 2 supersymmetric KdV equation in superspace, Stud. Appl. Math. 125 (2010) 343.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Y. Manin and A. Radul, A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy, Commun. Math. Phys. 98 (1985) 65 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    P. Mathieu, Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys. 29 (1988) 2499 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. [22]
    P. Mathieu, Superconformal algebra and supersymmetric Korteweg-de Vries equation, Phys. Lett. B 203 (1988) 287 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    D.J. Gross and A.A. Migdal, A nonperturbative treatment of two-dimensional quantum gravity, Nucl. Phys. B 340 (1990) 333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M.R. Douglas, Strings in less than one-dimension and the generalized KdV hierarchies, Phys. Lett. B 238 (1990) 176 [INSPIRE].ADSGoogle Scholar
  25. [25]
    R. Dijkgraaf and E. Witten, Mean field theory, topological field theory, and multimatrix models, Nucl. Phys. B 342 (1990) 486 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    P.P. Kulish and A.M. Zeitlin, Superconformal field theory and SUSY N = 1 KdV hierarchy. 1. Vertex operators and Yang-Baxter equation, Phys. Lett. B 597 (2004) 229 [hep-th/0407154] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    P.P. Kulish and A.M. Zeitlin, Superconformal field theory and SUSY N = 1 KdV hierarchy II: the q-operator, Nucl. Phys. B 709 (2005) 578 [hep-th/0501019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P.P. Kulish and A.M. Zeitlin, Quantum supersymmetric Toda-mKdV hierarchies, Nucl. Phys. B 720 (2005) 289 [hep-th/0506027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Mathieu, The Painleve property for fermionic extensions of the Korteweg-de Vries equation, Phys. Lett. A 128 (1988) 169 [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    W. Ovel and Z. Popowicz, The bihamiltonian structure of fully supersymmetric Korteweg-de Vries systems, Commun. Math. Phys. 139 (1991) 441 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, Integrability and bihamiltonian structure of the even order SKdV hierarchies, Rev. Math. Phys. 3 (1991) 479 [INSPIRE].Google Scholar
  32. [32]
    Q. Liu, Darboux transformations for supersymmetric Korteweg-de Vries equations, Lett. Math. Phys. 35 (1995) 115 [hep-th/9409008] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [33]
    A.S. Carstea, Extension of the bilinear formalism to supersymmetric KdV-type equations, Nonlinearity 13 (2000) 1645.MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. [34]
    A.S. Carstea, A. Ramani and B. Grammaticos, Constructing the soliton solutions for the N = 1 supersymmetric KdV hierarchy, Nonlinearity 14 (2001) 1419.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [35]
    Q.P. Liu and Y.F. Xie, Nonlinear superposition formula for N = 1 supersymmetric KdV equation, Phys. Lett. A 325 (2004) 139.MathSciNetADSGoogle Scholar
  36. [36]
    Q.P. Liu and X.B. Hu, Bilinearization of N = 1 supersymmetric Korteweg-de Vries equation revisited, J. Phys. A 38 (2005) 6371.MathSciNetGoogle Scholar
  37. [37]
    S. Andrea, A. Restuccia and A. Sotomayor, The Gardner category and non-local conservation laws for N = 1 super KdV, J. Math. Phys. 46 (2005) 103517 [hep-th/0504149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    Q. Liu and M. Manas, Crum transformations and wronskian type solutions for supersymmetric KdV equation, Phys. Lett. B 396 (1997) 133 [solv-int/9701005] [INSPIRE].
  39. [39]
    S.Y. Lou and X.B. Hu, Nonlocal Lie-Bäcklund symmetries and Olver symmetries of the KdV equation, Chin. Phys. Lett. 10 (1993) 577.MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S.Y. Lou and X.B. Hu, Infinitely many Lax pairs and symmetry constraints of the KP equation, J. Math. Phys. 38 (1997) 6401.MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. [41]
    S.Y. Lou and X.B. Hu, Non-local symmetries via Darboux transformations, J. Phys. A 30 (1997) L95.MathSciNetADSGoogle Scholar
  42. [42]
    X.-P. Cheng, C.-L. Chen and S.-Y. Lou, Interactions among different types of nonlinear waves described by the Kadomtsev-Petviashvili equation, arXiv:1208.3259.
  43. [43]
    S.Y. Lou, X. Hu and Y. Chen, Nonlocal symmetries related to Bäcklund transformation and their applications, arXiv:1201.3409.
  44. [44]
    S.Y. Lou, X. Hu and Y. Chen, Nonlocal symmetries related to Bcklund transformation and their applications, J. Phys. A 45 (2012) 155209.MathSciNetADSGoogle Scholar
  45. [45]
    X.R. Hu, S.Y. Lou and Y. Chen, Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation, Phys. Rev. E 85 (2012) 056607.ADSGoogle Scholar
  46. [46]
    S.Y. Lou, X.-P. Cheng and X.-Y. Tang, Interactions between solitons and other nonlinear Schrödinger waves, arXiv:1208.5314.
  47. [47]
    S.Y. Lou, Conformal invariance and integrable models, J. Phys. A 30 (1997) 4803.ADSGoogle Scholar
  48. [48]
    C.W. Cao, Stationary Harry-Dyms equation and its relation with geodesics on ellipsoid, Henan Sci. 5 (1987) 1.Google Scholar
  49. [49]
    C.W. Cao, A cubic system with Bargmann potential and N gap potential, Chin. Q. J. Math. 3 (1988) 90.Google Scholar
  50. [50]
    C.W. Cao, Nonlinearization of the Lax equation groups for the AKNS hierarchy, Sci. China A 33 (1990) 528.Google Scholar
  51. [51]
    C.W. Cao and X.G. Geng, C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy, J. Phys. A 23 (1990) 4117.MathSciNetADSGoogle Scholar
  52. [52]
    C.W. Cao and X.G. Geng, A nonconfocal generator of involutive systems and three associated soliton hierarchies, J. Math. Phys. 32 (1991) 2323.MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    S.Y. Lou, Negative Kadomtsev-Petviashvili Hierarchy, Physica Scripta 57 (1998) 481.MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. [54]
    X.B. Hu, S.Y. Lou and X.M. Qian, Nonlocal symmetries for bilinear equations and their applications, Stud. Appl. Math. 122 (2009) 305.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  3. 3.Faculty of ScienceNingbo UniversityNingboChina

Personalised recommendations