Advertisement

Properties of the classical action of quantum gravity

  • Damiano Anselmi
Article

Abstract

The classical action of quantum gravity, determined by renormalization, contains infinitely many independent couplings and can be expressed in different perturbatively equivalent ways. We organize it in a convenient form, which is based on invariants constructed with the Weyl tensor. We show that the FLRW metrics are exact solutions of the field equations in arbitrary dimensions, and so are all locally conformally flat solutions of the Einstein equations. Moreover, expanding the metric tensor around locally conformally flat backgrounds the quadratic part of the action is free of higher derivatives. Black-hole solutions of Schwarzschild and Kerr type are modified in a non-trivial way. We work out the first corrections to their metrics and study their properties.

Keywords

Classical Theories of Gravity Black Holes Models of Quantum Gravity Renormalization Group 

References

  1. [1]
    D. Anselmi, Absence of higher derivatives in the renormalization of propagators in quantum field theories with infinitely many couplings, Class. Quant. Grav. 20 (2003) 2355 [hep-th/0212013] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    G. ’t Hooft and M. Veltman, One-loop divergences in the theory of gravitation, Ann. Inst. Poincarè 20 (1974) 69.MathSciNetADSGoogle Scholar
  3. [3]
    M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Van Nieuwenhuizen, On the renormalization of quantum gravitation without matter, Annals Phys. 104 (1977) 197 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in An Einstein centenary survey, S. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  6. [6]
    K. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    P. van Nieuwenhuizen and C. Wu, On integral relations for invariants constructed from three Riemann tensors and their applications in quantum gravity, J. Math. Phys. 18 (1977) 182 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.D. Jackson, Classical electrodynamics, chapter 17, John Wiley and Sons, Inc., New York U.S.A. (1975)Google Scholar
  11. [11]
    L. Bel and H.S. Zia, Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian, Phys. Rev. D 32 (1985) 3128 [INSPIRE].ADSGoogle Scholar
  12. [12]
    L. Parker and J.Z. Simon, Einstein equation with quantum corrections reduced to second order, Phys. Rev. D 47 (1993) 1339 [gr-qc/9211002] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    D. Anselmi, Renormalization and causality violations in classical gravity coupled with quantum matter, JHEP 01 (2007) 062 [hep-th/0605205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Bambi, Testing the Kerr black hole hypothesis, Mod. Phys. Lett. A 26 (2011) 2453 [arXiv:1109.4256] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    T. Johannsen and D. Psaltis, A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem, Phys. Rev. D 83 (2011) 124015 [arXiv:1105.3191] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Anselmi, A general field-covariant formulation of quantum field theory, Eur. Phys. J. C 73 (2013) 2338 [arXiv:1205.3279] [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Anselmi, A master functional for quantum field theory, Eur. Phys. J. C (2013) 73:2385 [arXiv:1205.3584] [INSPIRE].
  18. [18]
    D. Anselmi, Master functional and proper formalism for quantum gauge field theory, Eur. Phys. J. C 73 (2013) 2363 [arXiv:1205.3862] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D. Anselmi and M. Halat, Renormalizable acausal theories of classical gravity coupled with interacting quantum fields, Class. Quant. Grav. 24 (2007) 1927 [hep-th/0611131] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Enrico Fermi”Università di Pisa, and INFN, Sezione di PisaPisaItaly

Personalised recommendations