On the Riemann tensor in double field theory

Article

Abstract

Double field theory provides T-duality covariant generalized tensors that are natural extensions of the scalar and Ricci curvatures of Riemannian geometry. We search for a similar extension of the Riemann curvature tensor by developing a geometry based on the generalized metric and the dilaton. We find a duality covariant Riemann tensor whose contractions give the Ricci and scalar curvatures, but that is not fully determined in terms of the physical fields. This suggests that α′ corrections to the effective action require α′ corrections to T-duality transformations and/or generalized diffeomorphisms. Further evidence to this effect is found by an additional computation that shows that there is no T-duality invariant four-derivative object built from the generalized metric and the dilaton that reduces to the square of the Riemann tensor.

Keywords

Gauge Symmetry String Duality Differential and Algebraic Geometry 

References

  1. [1]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  6. [6]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    O. Hohm, T-duality versus gauge symmetry, Prog. Theor. Phys. Suppl. 188 (2011) 116 [arXiv:1101.3484] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  14. [14]
    B. Zwiebach, Double field theory, T-duality and courant brackets, arXiv:1109.1782 [INSPIRE].
  15. [15]
    O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary terms in generalized geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. West, E 11, generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].
  29. [29]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  31. [31]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [arXiv:1112.0069] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M.B. Schulz, T-folds, doubled geometry and the SU(2) WZW model, arXiv:1106.6291 [INSPIRE].
  34. [34]
    N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    N.B. Copland, A double σ-model for double field theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double field theory for double D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [arXiv:1109.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    A. Coimbra, C. Strickland-Constable and D. Waldram, \( {{E}_{{d(d)}}} \times {{\mathbb{R}}^{ + }} \) generalised geometry, connections and M-theory, arXiv:1112.3989 [INSPIRE].
  43. [43]
    M. Gualtieri, Branes on Poisson varieties, arXiv:0710.2719 [INSPIRE].
  44. [44]
    I.A. Batalin and K. Bering, Odd scalar curvature in field-antifield formalism, J. Math. Phys. 49 (2008) 033515 [arXiv:0708.0400] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    I.A. Batalin and K. Bering, A comparative study of Laplacians and Schrödinger-Lichnerowicz-Weitzenbock identities in Riemannian and antisymplectic geometry, J. Math. Phys. 50 (2009) 073504 [arXiv:0809.4269] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    K.A. Meissner, Symmetries of higher order string gravity actions, Phys. Lett. B 392 (1997) 298 [hep-th/9610131] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940 [hep-th/9705193] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    P.A.M. Dirac, General theory of relativity, Princeton University Press, Princeton U.S.A. (1996).MATHGoogle Scholar
  49. [49]
    C.G. Callan Jr., I.R. Klebanov and M.J. Perry, String theory effective actions, Nucl. Phys. B 278 (1986) 78 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsMunichGermany
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations