Where is SUSY?

  • C. Beskidt
  • W. de Boer
  • D. I. Kazakov
  • F. Ratnikov
Article

Abstract

The direct searches for Superymmetry at colliders can be complemented by direct searches for dark matter (DM) in underground experiments, if one assumes the Lightest Supersymmetric Particle (LSP) provides the dark matter of the universe. It will be shown that within the Constrained minimal Supersymmetric Model (CMSSM) the direct searches for DM are complementary to direct LHC searches for SUSY and Higgs particles using analytical formulae. A combined excluded region from LHC, WMAP and XENON100 will be provided, showing that within the CMSSM gluinos below 1 TeV and LSP masses below 160 GeV are excluded (m1/2 > 400 GeV) independent of the squark masses.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    E.W. Kolb and M.S. Turner, The early universe, Frontiers in physics volume 69, Westview Press, U.S.A. (1990).Google Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} \) = 7 TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    CMS collaboration, V. Khachatryan et al., Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [INSPIRE].ADSGoogle Scholar
  8. [8]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with b jets and missing transverse momentum at the LHC, JHEP 07 (2011) 113 [arXiv:1106.3272] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt {s} \) = 7 TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} \) = 7 TeV in events with a single lepton, jets and missing transverse momentum, JHEP 08 (2011) 156 [arXiv:1107.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in events with a lepton, a photon and large missing transverse energy in pp collisions at \( \sqrt {s} \) = 7 TeV, JHEP 06 (2011) 093 [arXiv:1105.3152] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} \) = 7 TeV in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, S. Chatrchyan et al., Search for physics beyond the standard model using multilepton signatures in pp collisions at \( \sqrt {s} \) = 7 TeV, Phys. Lett. B 704 (2011) 411 [arXiv:1106.0933] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} \) = 7 TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \( \sqrt {s} \) = 7 TeV proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} \) = 7 TeV in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].ADSGoogle Scholar
  18. [18]
    CDMS and EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].ADSGoogle Scholar
  19. [19]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.F. Kolda, L. Roszkowski, J.D. Wells and G.L. Kane, Predictions for constrained minimal supersymmetry with bottom tau mass unification, Phys. Rev. D 50 (1994) 3498 [hep-ph/9404253] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    W. de Boer, Grand unified theories and supersymmetry in particle physics and cosmology, Prog. Part. Nucl. Phys. 33 (1994) 201 [hep-ph/9402266] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  25. [25]
    D. Kazakov, Supersymmetry on the run: LHC and dark matter, Nucl. Phys. Proc. Suppl. 203-204 (2010) 118 [arXiv:1010.5419] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of grand unified models with softly broken supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [INSPIRE].
  28. [28]
    A. Gladyshev, D. Kazakov, W. de Boer, G. Burkart and R. Ehret, MSSM predictions of the neutral Higgs boson masses and LEP-2 production cross-sections, Nucl. Phys. B 498 (1997) 3 [hep-ph/9603346] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W. de Boer, M. Huber, C. Sander and D. Kazakov, A global fit to the anomalous magnetic moment, b → X s γ and Higgs limits in the constrained MSSM, Phys. Lett. B 515 (2001) 283 [INSPIRE].ADSGoogle Scholar
  30. [30]
    O. Buchmueller et al., Supersymmetry and dark matter in light of LHC2010 and Xenon100 data, Eur. Phys. J. C 71 (2011) 1722 [arXiv:1106.2529] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Buchmueller et al., Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Bertone et al., Global fits of the CMSSM including the first LHC and XENON100 data, JCAP 01 (2012) 015 [arXiv:1107.1715] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    B. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits, Phys. Rev. D 83 (2011) 095019 [arXiv:1102.3149] [INSPIRE].ADSGoogle Scholar
  34. [34]
    B. Allanach, T. Khoo, C. Lester and S. Williams, The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit, JHEP 06 (2011) 035 [arXiv:1103.0969] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Strumia, Implications of first LHC results, arXiv:1107.1259 [INSPIRE].
  37. [37]
    S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim, New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett. A 26 (2011) 1521 [arXiv:1103.5061] [INSPIRE].ADSGoogle Scholar
  38. [38]
    R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The Impact of priors and observables on parameter inferences in the Constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Akrami, P. Scott, J. Edsjo, J. Conrad and L. Bergstrom, A profile likelihood analysis of the constrained MSSM with genetic algorithms, JHEP 04 (2010) 057 [arXiv:0910.3950] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Feroz et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Sekmen et al., Interpreting LHC SUSY searches in the phenomenological MSSM, JHEP 02 (2012) 075 [arXiv:1109.5119] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri and R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans, JHEP 06 (2011) 042 [arXiv:1101.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Beskidt et al., Constraints on supersymmetry from relic density compared with future Higgs searches at the LHC, Phys. Lett. B 695 (2011) 143 [arXiv:1008.2150] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Beskidt et al., Constraints from the decay \( {\text{B}}_s^0 \) → μ+ μ− and LHC limits on supersymmetry, Phys. Lett. B 705 (2011) 493 [arXiv:1109.6775] [INSPIRE].ADSGoogle Scholar
  45. [45]
    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a tool for dark matter studies, arXiv:1005.4133 [INSPIRE].
  48. [48]
    A. Pukhov, G. Bélanger, F. Boudjema and A. Semenov, Tools for dark matter in particle and astroparticle physics, PoS(ACAT2010)011 [arXiv:1007.5023] [INSPIRE].
  49. [49]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    W. de Boer, R. Ehret and D. Kazakov, Predictions of SUSY masses in the minimal supersymmetric grand unified theory, Z. Phys. C 67 (1995) 647 [hep-ph/9405342] [INSPIRE].ADSGoogle Scholar
  51. [51]
    CMS collaboration, S. Chatrchyan et al., Search for neutral MSSM Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt {s} \) = 7 TeV, Phys. Rev. Lett. 106 (2011) 231801 [arXiv:1104.1619] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS collaboration, G. Aad et al., Search for neutral MSSM Higgs bosons decaying to τ + τ pairs in proton-proton collisions at \( \sqrt {s} \) = 7 TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 174 [arXiv:1107.5003] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  54. [54]
    J. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567-569] [INSPIRE].
  55. [55]
    H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Cao, K.-I. Hikasa, W. Wang, J.M. Yang and L.-X. Yu, Constraints of dark matter direct detection experiments on the MSSM and implications on LHC Higgs search, Phys. Rev. D 82 (2010) 051701 [arXiv:1006.4811] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M. Weber and W. de Boer, Determination of the local dark matter density in our galaxy, Astron. Astrophys. 509 (2010) A25 [arXiv:0910.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    W. de Boer and M. Weber, The dark matter density in the solar neighborhood reconsidered, JCAP 04 (2011) 002 [arXiv:1011.6323] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/rare/ichep10/radll/OUTPUT/TABLES/radll.pdf, updated August (2010).
  61. [61]
    Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].ADSGoogle Scholar
  62. [62]
    CMS and LHCb collaboration, Search for the rare decay \( B_s^0 \) → μ+ μ− at the LHC with the CMS and LHCb experiments Combination of LHC results of the search for B s → μ+ μ− decays, LHCb-CONF-2011-047 (2011).Google Scholar
  63. [63]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} \) = 7 TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} \) = 7 TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].ADSGoogle Scholar
  66. [66]
    O. Buchmueller et al., Higgs and supersymmetry, arXiv:1112.3564 [INSPIRE].
  67. [67]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α MZ , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  69. [69]
    S. Heinemeyer, private communication.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • C. Beskidt
    • 1
  • W. de Boer
    • 1
  • D. I. Kazakov
    • 2
    • 3
  • F. Ratnikov
    • 1
    • 3
  1. 1.Institut für Experimentelle KernphysikKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Institute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations