A formalism for the systematic treatment of rapidity logarithms in Quantum Field Theory

  • Jui-Yu Chiu
  • Ambar Jain
  • Duff NeillEmail author
  • Ira Z. Rothstein


Many observables in QCD rely upon the resummation of perturbation theory to retain predictive power. Resummation follows after one factorizes the cross section into the relevant modes. The class of observables which are sensitive to soft recoil effects are particularly challenging to factorize and resum since they involve rapidity logarithms. Such observables include: transverse momentum distributions at p T much less then the high energy scattering scale, jet broadening, exclusive hadroproduction and decay, as well as the Sudakov form factor. In this paper we will present a formalism which allows one to factorize and resum the perturbative series for such observables in a systematic fashion through the notion of a “rapidity renormalization group”. That is, a Collin-Soper like equation is realized as a renormalization group equation, but has a more universal applicability to observables beyond the traditional transverse momentum dependent parton distribution functions (TMDPDFs) and the Sudakov form factor. This formalism has the feature that it allows one to track the (non-standard) scheme dependence which is inherent in any sce- nario where one performs a resummation of rapidity divergences. We present a pedagogical introduction to the formalism by applying it to the well-known massive Sudakov form fac- tor. The formalism is then used to study observables of current interest. A factorization theorem for the transverse momentum distribution of Higgs production is presented along with the result for the resummed cross section at NLL. Our formalism allows one to define gauge invariant TMDPDFs which are independent of both the hard scattering amplitude and the soft function, i.e. they are universal. We present details of the factorization and re- summation of the jet broadening cross section including a renormalization in p space. We furthermore show how to regulate and renormalize exclusive processes which are plagued by endpoint singularities in such a way as to allow for a consistent resummation.


Resummation QCD 


  1. [1]
    G.F. Sterman, Partons, factorization and resummation, TASI 95, hep-ph/9606312 [INSPIRE].
  2. [2]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Catani, G. Turnock and B. Webber, Jet broadening measures in e+ e− annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].ADSGoogle Scholar
  4. [4]
    P.E. Rakow and B. Webber, Transverse momentum moments of hadron distributions in QCD jets, Nucl. Phys. B 191 (1981) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.C. Collins and F. Tkachov, Breakdown of dimensional regularization in the Sudakov problem, Phys. Lett. B 294 (1992) 403 [hep-ph/9208209] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.C. Collins and D.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  9. [9]
    J. Collins, Rapidity divergences and valid definitions of parton densities, PoS(LC2008)028 [arXiv:0808.2665] [INSPIRE].
  10. [10]
    B. Grinstein and I.Z. Rothstein, Effective field theory and matching in nonrelativistic gauge theories, Phys. Rev. D 57 (1998) 78 [hep-ph/9703298] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C.W. Bauer, D. Pirjol and I.W. Stewart, On power suppressed operators and gauge invariance in SCET, Phys. Rev. D 68 (2003) 034021 [hep-ph/0303156] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].
  17. [17]
    C. Lee and G.F. Sterman, Momentum flow correlations from event shapes: factorized soft gluons and soft-collinear effective theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Idilbi and T. Mehen, Demonstration of the equivalence of soft and zero-bin subtractions, Phys. Rev. D 76 (2007) 094015 [arXiv:0707.1101] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].Google Scholar
  21. [21]
    A. Jain, M. Procura and W.J. Waalewijn, Parton fragmentation within an identified jet at NNLL, JHEP 05 (2011) 035 [arXiv:1101.4953] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Becher, R.J. Hill and M. Neubert, Soft collinear messengers: a new mode in soft collinear effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in soft-collinear effective theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.C. Collins, D.E. Soper and G.F. Sterman, Soft gluons and factorization, Nucl. Phys. B 308 (1988) 833 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G.T. Bodwin, Factorization of the Drell-Yan cross-section in perturbation theory, Phys. Rev. D 31 (1985) 2616 [Erratum ibid. D 34 (1986) 3932] [INSPIRE].
  30. [30]
    A. Idilbi and A. Majumder, Extending soft-collinear-effective-theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].ADSGoogle Scholar
  31. [31]
    F. D’Eramo, H. Liu and K. Rajagopal, Jet quenching parameter via Soft Collinear Effective Theory (SCET), Int. J. Mod. Phys. E 20 (2011) 1610 [arXiv:1010.0890] [INSPIRE].ADSGoogle Scholar
  32. [32]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].ADSGoogle Scholar
  33. [33]
    V.A. Smirnov, Asymptotic expansions in limits of large momenta and masses, Commun. Math. Phys. 134 (1990) 109 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    J.-Y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-collinear factorization and zero-bin subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    J. Frenkel and J. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G. Korchemsky and A. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.V. Manohar, Deep inelastic scattering as x → 1 using soft collinear effective theory, Phys. Rev. D 68 (2003) 114019 [hep-ph/0309176] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Arnesen, I.Z. Rothstein and J. Zupan, Smoking guns for on-shell new physics at the LHC, Phys. Rev. Lett. 103 (2009) 151801 [arXiv:0809.1429] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev. D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Idilbi, X.-D. Ji and F. Yuan, Transverse momentum distribution through soft-gluon resummation in effective field theory, Phys. Lett. B 625 (2005) 253 [hep-ph/0507196] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    I. Hinchliffe and S. Novaes, On the mean transverse momentum of Higgs bosons at the SSC, Phys. Rev. D 38 (1988) 3475 [INSPIRE].ADSGoogle Scholar
  48. [48]
    R.P. Kauffman, Higgs boson p T in gluon fusion, Phys. Rev. D 44 (1991) 1415 [INSPIRE].ADSGoogle Scholar
  49. [49]
    D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb−1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).Google Scholar
  53. [53]
    CMS collaboration, Combination of CMS searches for a Standard Model Higgs boson, CMS-PAS-HIG-11-032, CERN, Geneva Switzerland (2011).Google Scholar
  54. [54]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C18 (1983) 69 [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSGoogle Scholar
  56. [56]
    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    X.-D. Ji and F. Yuan, Parton distributions in light cone gauge: where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].ADSGoogle Scholar
  59. [59]
    I. Cherednikov and N. Stefanis, Renormalization, Wilson lines and transverse-momentum dependent parton distribution functions, Phys. Rev. D 77 (2008) 094001 [arXiv:0710.1955] [INSPIRE].ADSGoogle Scholar
  60. [60]
    I. Cherednikov and N. Stefanis, Wilson lines and transverse-momentum dependent parton distribution functions: a renormalization-group analysis, Nucl. Phys. B 802 (2008) 146 [arXiv:0802.2821] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    I. Cherednikov and N. Stefanis, Renormalization-group properties of transverse-momentum dependent parton distribution functions in the light-cone gauge with the Mandelstam-Leibbrandt prescription, Phys. Rev. D 80 (2009) 054008 [arXiv:0904.2727] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T-Wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J.C. Collins, What exactly is a parton density?, Acta Phys. Polon. B 34 (2003) 3103 [hep-ph/0304122] [INSPIRE].ADSGoogle Scholar
  65. [65]
    X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].ADSGoogle Scholar
  66. [66]
    F. Hautmann, Endpoint singularities in unintegrated parton distributions, Phys. Lett. B 655 (2007) 26 [hep-ph/0702196] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Meissner, A. Metz and M. Schlegel, Generalized transverse momentum dependent parton distributions of the nucleon, arXiv:0807.1154 [INSPIRE].
  68. [68]
    B. Pasquini, S. Cazzaniga and S. Boffi, Transverse momentum dependent parton distributions in a light-cone quark model, Phys. Rev. D 78 (2008) 034025 [arXiv:0806.2298] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Jain, M. Procura and W.J. Waalewijn, Fully-unintegrated parton distribution and fragmentation functions at perturbative k T, arXiv:1110.0839 [INSPIRE].
  70. [70]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Frixione, P. Nason and G. Ridolfi, Problems in the resummation of soft gluon effects in the transverse momentum distributions of massive vector bosons in hadronic collisions, Nucl. Phys. B 542 (1999) 311 [hep-ph/9809367] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A.V. Manohar and W.J. Waalewijn, A QCD analysis of double parton scattering: color correlations, interference effects and evolution, arXiv:1202.3794 [INSPIRE].
  73. [73]
    R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to pp → H + x at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R.P. Kauffman, Higgs boson p T in gluon fusion, Phys. Rev. D 44 (1991) 1415 [INSPIRE].ADSGoogle Scholar
  75. [75]
    S.M. Aybat and T.C. Rogers, TMD parton distribution and fragmentation functions with QCD evolution, Phys. Rev. D 83 (2011) 114042 [arXiv:1101.5057] [INSPIRE].ADSGoogle Scholar
  76. [76]
    T. Becher and G. Bell, Analytic regularization in soft-collinear effective theory, arXiv:1112.3907 [INSPIRE].
  77. [77]
    J. Collins, New definition of TMD parton densities, Int. J. Mod. Phys. Conf. Ser. 4 (2011) 85 [arXiv:1107.4123] [INSPIRE].CrossRefGoogle Scholar
  78. [78]
    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).CrossRefGoogle Scholar
  81. [81]
    I.W. Stewart and I.Z. Rothstein, Glauber gluons in SCET, in SCET workshop 2010, Ringberg Germany (2010).Google Scholar
  82. [82]
    M. Garcia-Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, arXiv:1111.4996 [INSPIRE].
  83. [83]
    M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSGoogle Scholar
  84. [84]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global structure of the \( O\left( {\alpha_s^2} \right) \) dijet soft function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    S. Kluth, Tests of quantum chromo dynamics at e+ e− colliders, Rept. Prog. Phys. 69 (2006) 1771 [hep-ex/0603011] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    C.F. Berger and G.F. Sterman, Scaling rule for nonperturbative radiation in a class of event shapes, JHEP 09 (2003) 058 [hep-ph/0307394] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    A. Hornig, C. Lee and G. Ovanesyan, Effective predictions of event shapes: factorized, resummed and gapped angularity distributions, JHEP 05 (2009) 122 [arXiv:0901.3780] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  92. [92]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].ADSGoogle Scholar
  93. [93]
    C.W. Bauer, C. Lee, A.V. Manohar and M.B. Wise, Enhanced nonperturbative effects in Z decays to hadrons, Phys. Rev. D 70 (2004) 034014 [hep-ph/0309278] [INSPIRE].ADSGoogle Scholar
  94. [94]
    L3 collaboration, P. Achard et al., Studies of hadronic event structure in e+ e− annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    T. Becher, G. Bell and M. Neubert, Factorization and resummation for jet broadening, Phys. Lett. B 704 (2011) 276 [arXiv:1104.4108] [INSPIRE].ADSGoogle Scholar
  96. [96]
    J.-Y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak corrections in high energy processes using effective field theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].ADSGoogle Scholar
  97. [97]
    B. Geshkenbein and M. Terentev, The enhanced power correction to the asymptotics of the pion form-factor, Phys. Lett. B 117 (1982) 243 [INSPIRE].ADSGoogle Scholar
  98. [98]
    V. Chernyak and A. Zhitnitsky, Asymptotic behavior of exclusive processes in QCD, Phys. Rept. 112 (1984) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    R. Akhoury, G.F. Sterman and Y. Yao, Exclusive semileptonic decays of B mesons into light mesons, Phys. Rev. D 50 (1994) 358 [INSPIRE].ADSGoogle Scholar
  100. [100]
    C.W. Bauer, D. Pirjol, I.Z. Rothstein and I.W. Stewart, B → M 1 M 2 : factorization, charming penguins, strong phases and polarization, Phys. Rev. D 70 (2004) 054015 [hep-ph/0401188] [INSPIRE].ADSGoogle Scholar
  101. [101]
    C.W. Bauer, I.Z. Rothstein and I.W. Stewart, SCET analysis of B → K π, B → \( {\text{K}}\overline {\text{K}} \) B → ππ decays, Phys. Rev. D 74 (2006) 034010 [hep-ph/0510241] [INSPIRE].ADSGoogle Scholar
  102. [102]
    G.P. Lepage and S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  103. [103]
    G. Korchemsky and G. Marchesini, Structure function for large X and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    A.H. Hoang, A.V. Manohar and I.W. Stewart, The running Coulomb potential and Lamb shift in QCD, Phys. Rev. D 64 (2001) 014033 [hep-ph/0102257] [INSPIRE].ADSGoogle Scholar
  105. [105]
    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Jui-Yu Chiu
    • 1
  • Ambar Jain
    • 1
  • Duff Neill
    • 1
    Email author
  • Ira Z. Rothstein
    • 1
    • 2
  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghU.S.A.
  2. 2.Physics DepartmentCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations