Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology



It has been recently suggested by Dvali and Vikman that the superluminal neutrino phenomenology of the OPERA experiment may be due to an environmental feature of the Earth, naturally yielding a long-range fifth force of gravitational origin whose coupling with the neutrino is set by the scale M*, in units of reduced Planck mass. Its characteristic length λ should not be smaller than one Earth’s radius Re, while its upper bound is expected to be slightly smaller than the Earth-Moon distance (60 Re). We analytically work out some orbital effects of a Yukawa-type fifth force for a test particle moving in the modified field of a central body. Our results are quite general since they are not restricted to any particular size of λ; moreover, they are valid for an arbitrary orbital configuration of the particle, i.e. for any value of its eccentricity e. We find that the dimensionless strength coupling parameter α is constrained to |α| ≲ 1 × 10−10 − 4 × 10−9 for 1 Re ≤ λ ≤ 10 Re by the laser data of the Earth’s artificial satellite LAGEOS II, corresponding to M* ≳ 4 × 109 − 1.6 × 1010. The Moon perigee allows to obtain |α| ≲ 3 × 10−11 for the Earth-Moon pair in the range 15 Re ≲ λ ≲ 60 Re, which translates as M* ≳ 3 × 1010 − 4.5 × 1010. Our results are neither necessarily limited to the superluminal OPERA scenario nor to the Dvali-Vikman model, in which it is M* ~ 10−6 at λ ~ 1 Re, in contrast with our bounds: they generally extend to any theoretical scenario implying a fifth-force of Yukawa-type.


Neutrino Physics Models of Quantum Gravity 


  1. [1]
    OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].
  2. [2]
    G. Brumfiel, Particles break light-speed limit, Nature 22 September 2011 [].
  3. [3]
    A. Cho, Neutrinos travel faster than light, according to one experiment, Science 22 September 2011 [].
  4. [4]
    L. Grossmann, Dimension-hop may allow neutrinos to cheat light speed, New Scientist 23 September 2011 [].
  5. [5]
    L. Grossmann, Faster-than-light neutrino claim bolstered, New Scientist 23 September 2011 []
  6. [6]
    E. Reich, Speedy neutrinos challenge physicists, Nature 477 (2011) 520 [].ADSCrossRefGoogle Scholar
  7. [7]
    E. Cartlidge, Breaking news: error undoes faster-than-light neutrino results, ScienceInsider 22 February, 2012 [].
  8. [8]
    E. Cartlidge, Breaking news: official word on superluminal neutrinos leaves warp-drive fans a shred of hope-barely, ScienceInsider 24 February 2012 [].
  9. [9]
    ICARUS collaboration, M. Antonello et al., Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam, arXiv:1203.3433 [INSPIRE].
  10. [10]
    E. Recami, I tachioni, Annuario della EST. 73 (1973) 85.Google Scholar
  11. [11]
    E. Giannetto, G. Maccarrone, R. Mignani and E. Recami, Are muon neutrinos faster than light particles?: possible consequences for neutrino oscillations, Phys. Lett. B 178 (1986) 115 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Alfaro, Quantum gravity and Lorentz invariance deformation in the standard model, Phys. Rev. Lett. 94 (2005) 221302 [hep-th/0412295] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    V. Gharibyan, Possible observation of photon speed energy dependence, Phys. Lett. B 611 (2005) 231 [hep-ex/0303010] [INSPIRE].ADSGoogle Scholar
  14. [14]
    H. Päs, S. Pakvasa and T.J. Weiler, Sterile-active neutrino oscillations and shortcuts in the extra dimension, Phys. Rev. D 72 (2005) 095017 [hep-ph/0504096] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Dent, H. Päs, S. Pakvasa and T. Weiler, Neutrino time travel, in the proceedings of the 15th international Conference on Supersymmetry and the Unification of fundamental Interactions SUSY 2007, July 26-August 1, 2007, Karlsruhe Germany, W. de Boer and I. Gebauer eds., Brno: University of Karlsruhe in collaboration with Tribun EU s.r.o. (2008) 760.Google Scholar
  16. [16]
    S. Hollenberg, O. Micu, H. Päs and T.J. Weiler, Baseline-dependent neutrino oscillations withextra-dimensional shortcuts, Phys. Rev. D 80 (2009) 093005 [arXiv:0906.0150] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. Dvali and A. Vikman, Price for environmental neutrino-superluminality, JHEP 02 (2012) 134 [arXiv:1109.5685] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. Dvali, private communication (2011).Google Scholar
  19. [19]
    M. Anacleto, F. Brito and E. Passos, Supersonic velocities in noncommutative acoustic black holes, Phys. Rev. D 85 (2012) 025013 [arXiv:1109.6298] [INSPIRE].ADSGoogle Scholar
  20. [20]
    X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, Phys. Rev. Lett. 107 (2011) 241802 [arXiv:1109.6667] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Ciuffoli, J. Evslin, J. Liu and X. Zhang, OPERA and a neutrino dark energy model, arXiv:1109.6641 [INSPIRE].
  22. [22]
    N. Itoh, H. Hayashi, A. Nishikawa and Y. Kohyama, Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes, Astrophys. J. Supp. 102 (1996) 411.ADSCrossRefGoogle Scholar
  23. [23]
    A. Kehagias, Relativistic superluminal neutrinos, arXiv:1109.6312 [INSPIRE].
  24. [24]
    R. Konoplya, Superluminal neutrinos and the tachyons stability in the rotating Universe, Phys. Lett. B 706 (2012) 451 [arXiv:1109.6215] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Kraniotis, Exact deflection of a neutral-tachyon in the Kerrs gravitational field, arXiv:1110.1223 [INSPIRE].
  26. [26]
    D. Lüst and M. Petropoulos, Comment on superluminality in general relativity, Class. Quant. Grav. 29 (2012) 085013 [arXiv:1110.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Pfeifer and M.N. Wohlfarth, Beyond the speed of light on Finsler spacetimes, arXiv:1109.6005 [INSPIRE].
  28. [28]
    E.N. Saridakis, Superluminal neutrinos in Hořava-Lifshitz gravity, arXiv:1110.0697 [INSPIRE].
  29. [29]
    S.I. Vacaru, Super-luminal effects for Finsler branes as a way to preserve the paradigm of relativity theories, arXiv:1110.0675 [INSPIRE].
  30. [30]
    P. Wang, H. Wu and H. Yang, Superluminal neutrinos and domain walls, arXiv:1109.6930 [INSPIRE].
  31. [31]
    M. Schreck, Multiple Lorentz groupsA toy model for superluminal OPERA neutrinos, arXiv:1111.7268 [INSPIRE].
  32. [32]
    G. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, The power of brane induced gravity, Phys. Rev. D 64 (2001) 084004 [hep-ph/0102216] [INSPIRE].ADSGoogle Scholar
  33. [33]
    B. Bertotti, P. Farinella and D. Vokrouhlický, Physics of the Solar system, Kluwer Academic Press, Dordrecht Germany (2003).CrossRefGoogle Scholar
  34. [34]
    C. Burgess and J. Cloutier, Astrophysical evidence for a weak new force?, Phys. Rev. D 38 (1988) 2944 [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Talmadge, J. Berthias, R. Hellings and E. Standish, Model independent constraints on possible modifications of newtonian gravity, Phys. Rev. Lett. 61 (1988) 1159 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Fischbach and C. Talmadge, The search for non-newtonian gravity, Springer-Verlag, New York U.S.A. (1999).MATHCrossRefGoogle Scholar
  37. [37]
    K. Nordtvedt, Improving gravity theory tests with solar system [grand fits], Phys. Rev. D 61 (2000) 122001 [INSPIRE].ADSGoogle Scholar
  38. [38]
    L. Iorio, Constraints to a Yukawa gravitational potential from laser data to LAGEOS satellites, Phys. Lett. A 298 (2002) 315 [gr-qc/0201081] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Adelberger, B. Heckel and N. A.E., Tests of the gravitational inverse-square law, Ann. Rev. Nucl. Part. Sc. 53 (2003) 77.Google Scholar
  40. [40]
    D. Lucchesi, Lageos II perigee shift and Schwarzschild gravitoelectric field, Phys. Lett. A 318 (2003) 234.ADSGoogle Scholar
  41. [41]
    N. Kolosnitsyn and V. Melnikov, Test of the inverse square law through precession of orbits, Gen. Rel. Grav. 36 (2004) 1619 [gr-qc/0302048] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  42. [42]
    N. Kolosnitsyn and V. Melnikov, New observational tests of non-newtonian interactions at planetary and binary pulsar orbital distances, Grav. Cosm. 10 (2004) 137.ADSMATHGoogle Scholar
  43. [43]
    O. Bertolami and J. Paramos, Astrophysical constraints on scalar field models, Phys. Rev. D 71 (2005) 023521 [astro-ph/0408216] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    S. Reynaud and M.-T. Jaekel, Testing the Newton law at long distances, Int. J. Mod. Phys. A 20 (2005) 2294 [gr-qc/0501038] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Sereno and P. Jetzer, Dark matter versus modifications of the gravitational inverse-square law: results from planetary motion in the Solar system, Mon. Not. Royal Astr. Soc. 371 (2006) 626.ADSCrossRefGoogle Scholar
  46. [46]
    G.S. Adkins and J. McDonnell, Orbital precession due to central-force perturbations, Phys. Rev. D 75 (2007) 082001 [gr-qc/0702015] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    L. Iorio, First preliminary tests of the general relativistic gravitomagnetic field of the sun and new constraints on a Yukawa-like fifth force from planetary data, Plan. Sp. Sc. 55 (2007) 1290.ADSCrossRefGoogle Scholar
  48. [48]
    L. Iorio, Constraints on the range lambda of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar system planetary motions, JHEP 10 (2007) 041 [arXiv:0708.1080] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Iorio, Putting Yukawa-like modified gravity (mog) on the test in the Solar system, Schol. Res. Exch. 2008 (2008) 238385.ADSGoogle Scholar
  50. [50]
    J. Moffat, A modified gravity and its consequences for the Solar system, astrophysics and cosmology, Int. J. Mod. Phys. D 16 (2008) 2075 [gr-qc/0608074] [INSPIRE].ADSGoogle Scholar
  51. [51]
    X.-M. Deng, Y. Xie and T.-Y. Huang, A modified scalar-tensor-vector gravity theory and the constraint on its parameters, Phys. Rev. D 79 (2009) 044014 [arXiv:0901.3730] [INSPIRE].ADSGoogle Scholar
  52. [52]
    I. Haranas and O. Ragos, Yukawa-type effects in satellite dynamics, Astrophys. Sp. Sc. 331 (2011) 115.ADSMATHCrossRefGoogle Scholar
  53. [53]
    I. Haranas and O. Ragos, Calculation of radar signal delays in the vicinity of the sun due to the contribution of a Yukawa correction term in the gravitational potential, Astrophys. Sp. Sc. 334 (2011) 71.ADSMATHCrossRefGoogle Scholar
  54. [54]
    I. Haranas, O. Ragos and M. Vasile, Yukawa-type potential effects in the anomalistic period of celestial bodies, Astrophys. Sp. Sc. 332 (2011) 107.ADSMATHCrossRefGoogle Scholar
  55. [55]
    D. Krause and E. Fischbach, Searching for extra dimensions and new string-inspired forces in the Casimir regime, in Gyros, clocks, interferometers…: testing relativistic gravity in space, Lecture Notes in Physics 562, Springer-Verlag, Berlin Germany (2001) 292.Google Scholar
  56. [56]
    J. Moffat, Modified gravity or dark matter?, arXiv:1101.1935 [INSPIRE].
  57. [57]
    K. Nordtvedt, An overview of Solar system gravitational physics: the theory-experiment interface, in Gyros, clocks, interferometers…: testing relativistic gravity in space, Lecture Notes in Physics 562, Springer-Verlag, Berlin Germany (2001) 4.Google Scholar
  58. [58]
    K. Nordtvedt, , LARES and tests on new long range forces, in LARES Laser Relativity Satellite for the study of the Earth gravitational field and general relativity measurements. An ASI small mission. Phase A report, Università di Roma “La Sapienza”, Rome Italy, (1998) 34.Google Scholar
  59. [59]
    J. Ries, R. Eanes and B. Tapley, Lense-thirring precession determination from laser ranging to artificial satellites, in Nonlinear gravitodynamics. The lense-thirring effect, World Scientific, Singapore (2003) 201.Google Scholar
  60. [60]
    I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira and J. Pérez-Mercader, Test of general relativity and measurement of the lense-thirring effect with two earth satellites, Science 279 (1998) 2100.ADSCrossRefGoogle Scholar
  61. [61]
    D. Lucchesi, The LAGEOS satellites: non-gravitational perturbations and the lense-thirring effect, in The measurement of gravitomagnetism: a challenging enterprise, NOVA Science Publishers, Hauppauge U.S.A. (2007) 137.Google Scholar
  62. [62]
    M. Pearlman, J. Degnan, and J. Bosworth, The international laser ranging service, Adv. Sp. Res. 30 (2002) 135.ADSCrossRefGoogle Scholar
  63. [63]
    F. Barthelmes and W. Köhler, A web based service for using global earth gravity field models, in Arbeitskreis Geodäsie/Geophysik, Herbsttagung 2010, 19-22 October 2010, Smolenice, Slovakia, Deutsches GeoForschungsZentrum GFZ, (2010).Google Scholar
  64. [64]
    C. A. Wagner and D. C. McAdoo, Error calibration of geopotential harmonics in recent and past gravitational fields, J. Geod. 86 (2012) 99.ADSCrossRefGoogle Scholar
  65. [65]
    A. Jäggi, L. Prange, U. Meyer, L. Mervart, G. Beutler, T. Gruber, R. Dach and R. Pail, Gravity field determination at AIUB: from annual to multi-annual solutions, EGU2010-5842, in EGU General Assembly 2010, 2-7 May 2010, Vienna Austria, European Geophysical Union (2010) [].Google Scholar
  66. [66]
    H. Goiginger et al., The satellite-only global gravity field model GOCO02S, EGU2011-10571, in EGU General Assembly 2011, 3-8 April 2011, Vienna Austria, European Geophysical Union (2011).Google Scholar
  67. [67]
    R. Pail et al., First goce gravity field models derived by three different approaches, J. Geod. 85 (2011) 819.ADSCrossRefGoogle Scholar
  68. [68]
    C. Förste et al., Eigen-6 a new combined global gravity field model including goce data from the collaboration of gfz-potsdam and grgs-toulouse, EGU2011-3242, in EGU General Assembly 2011, 3-8 April 2011, Vienna Austria, European Geophysical Union (2011).Google Scholar
  69. [69]
    B. Tapley, et al., The joint gravity model 3, J. Geophys. Res. 101 (1996) 28029.ADSCrossRefGoogle Scholar
  70. [70]
    F. Lemoine et al., The development of the joint nasa gsfc and the national imagery and mapping agency (nima) geopotential modelegm96, NASA Technical Paper NASA/TP1998206861, Goddard Space Flight Center, Greenbelt U.S.A. (1998).Google Scholar
  71. [71]
    T. Mayer-Gürr, E. Kurtenbach, and A. Eicker, Itg-grace2010, (2010).
  72. [72]
    D.M. Lucchesi and R. Peron, Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity, Phys. Rev. Lett. 105 (2010) 231103 [arXiv:1106.2905] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    C. Reigber et al., An earth gravity field model complete to degree and order 150 from grace: Eigen-grace02s, J. Geodyn. 39 (2005) 1.ADSCrossRefGoogle Scholar
  74. [74]
    R. March, G. Bellettini, R. Tauraso and S. Dell’Agnello, Constraining spacetime torsion with LAGEOS, Gen. Rel. Grav. 43 (2011) 3099 [arXiv:1101.2791] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  75. [75]
    J. Dickey et al., Lunar laser ranging: a continuing legacy of the apollo program, Science 265 (1994) 482.ADSCrossRefGoogle Scholar
  76. [76]
    J. Müller, M. Schneider, M. Soffel and H. Ruder, Testing Einsteins theory of gravity by analyzing lunar laser ranging data, Astrophys. J. Lett. 382 (1991) L101.ADSCrossRefGoogle Scholar
  77. [77]
    J. Williams, X. Newhall and J. Dickey, Relativity parameters determined from lunar laser ranging, Phys. Rev. D 53 (1996) 6730 [INSPIRE].ADSGoogle Scholar
  78. [78]
    J. Müller, J. Williams, S. Turyshev and P. Shelus, Potential capabilities of lunar laser ranging for geodesy and relativity, in Dynamic planet 2005: monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG Symposia, Springer-Verlag, Berlin Germany (2007) 903.Google Scholar
  79. [79]
    J. Müller, J. Williams and S. Turyshev, Lunar laser ranging contributions to relativity and geodesy, in Lasers, clocks and drag-free control: exploration of relativistic gravity in space, Astrophys. Sp. Sc. Lib. 349, Springer-Verlag, Berlin Germany, (2008) 456.Google Scholar
  80. [80]
    G. Li and H. Zhao, Constraint on intermediate-range gravity from earth-satellite and lunar orbiter measurements and lunar laser ranging, Int. J. Mod. Phys. D 14 (2005) 1657 [gr-qc/0505090] [INSPIRE].ADSGoogle Scholar
  81. [81]
    L. Tsang, How can NASAs lunar reconnaissance orbiter projects verify the existence of the fifth force, New Astronomy 17 (2012) 18.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Ministero dell’Istruzione, dell’Università e della Ricerca (M.I.U.R.)-Istruzione Fellow of the Royal Astronomical Society (F.R.A.S.)International Institute for Theoretical Physics and Advanced Mathematics Einstein-Galilei Viale Unità di Italia 68BariItaly

Personalised recommendations