Advertisement

A twistor description of six-dimensional \( \mathcal{N} = \left( {1,1} \right) \) super Yang-Mills theory

  • Christian Sämann
  • Robert Wimmer
  • Martin Wolf
Open Access
Article

Abstract

We present a twistor space that describes super null-lines on six-dimensional \( \mathcal{N} = \left( {1,1} \right) \) superspace. We then show that there is a one-to-one correspondence between holomorphic vector bundles over this twistor space and solutions to the field equations of \( \mathcal{N} = \left( {1,1} \right) \) super Yang-Mills theory. Our constructions naturally reduce to those of the twistorial description of maximally supersymmetric Yang-Mills theory in four dimensions.

Keywords

Supersymmetry and Duality Supersymmetric gauge theory 

References

  1. [1]
    L.P. Hughston, Applications of Cartan spinors to differential geometry in higher dimensions, in Spinors in physics and geometry, G. Furlan and A. Trautman eds., World Scientific, Singapore (1987).Google Scholar
  2. [2]
    C. Sämann and M. Wolf, On twistors and conformal field theories from six dimensions, arXiv:1111.2539 [INSPIRE].
  3. [3]
    L. Mason, R. Reid-Edwards and A. Taghavi-Chabert, Conformal field theories in six-dimensional twistor space, arXiv:1111.2585 [INSPIRE].
  4. [4]
    C. Devchand, Integrability on lightlike lines in six-dimensional superspace, Z. Phys. C 32 (1986) 233 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    J.P. Harnad and S. Shnider, Isotropic geometry, twistors and supertwistors. 1. The generalized klein correspondence and spinor flags, J. Math. Phys. 33 (1992) 3197 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J.P. Harnad and S. Shnider, Isotropic geometry and twistors in higher dimensions. 2. Odd dimensions, reality conditions and twistor superspaces, J. Math. Phys. 36 (1995) 1945 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, JHEP 04 (2010) 127 [arXiv:0910.2688] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Brandhuber, D. Korres, D. Koschade and G. Travaglini, One-loop amplitudes in six-dimensional (1, 1) theories from generalised unitarity, JHEP 02 (2011) 077 [arXiv:1010.1515] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    T. Dennen and Y.-t. Huang, Dual conformal properties of six-dimensional maximal super Yang-Mills amplitudes, JHEP 01 (2011) 140 [arXiv:1010.5874] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Samtleben and R. Wimmer, N = 8 superspace constraints for three-dimensional gauge theories, JHEP 02 (2010) 070 [arXiv:0912.1358] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978) 394 [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Isenberg, P. Yasskin and P. Green, Nonselfdual gauge fields, Phys. Lett. B 78 (1978) 462 [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Isenberg and P.B. Yasskin, Twistor description of non-self-dual Yang-Mills fields, in Complex manifold techniques in theoretical physics, D.E. Lerner et al. eds., Pitman Advanced Publishing Program, U.S.A. (1978).Google Scholar
  16. [16]
    R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press, Cambridge U.K. (1990).CrossRefGoogle Scholar
  17. [17]
    Y.I. Manin, Gauge field theory and complex geometry, Springer, U.S.A. (1988).zbMATHGoogle Scholar
  18. [18]
    L. Hughston and W. Shaw, Minimal curves in six-dimensions, Class. Quant. Grav. 4 (1987) 869 [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Maxwell Institute for Mathematical Sciences, Department of MathematicsHeriot-Watt UniversityEdinburghUK
  2. 2.Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de LyonLyon cedex 07France
  3. 3.Department of MathematicsUniversity of SurreyGuildfordUK

Personalised recommendations