On the scalar spectrum of the Y p,q manifolds

  • Fang Chen
  • Keshav Dasgupta
  • Alberto Enciso
  • Niky Kamran
  • Jihye Seo


The spectra of supergravity modes in anti de Sitter (AdS) space on a five- sphere endowed with the round metric (which is the simplest 5d Sasaki-Einstein space) has been studied in detail in the past. However for the more general class of cohomogeneity one Sasaki-Einstein metrics on S 2 × S 3, given by the Y p,q class, a complete study of the spectra has not been attempted. Earlier studies on scalar spectrum were restricted to only the first few eigenstates. In this paper we take a step in this direction by analysing the full scalar spectrum on these spaces. However it turns out that finding the exact solution of the corresponding eigenvalue problem in closed form is not feasible since the computation of the eigenvalues of the Laplacian boils down to the analysis of a one-dimensional operator of Heun type, whose spectrum cannot be computed in closed form. However, despite this analytical obstacle, we manage to get both lower and upper bounds on the eigenvalues of the scalar spectrum by comparing the eigenvalue problem with a simpler, solvable system. We also briefly touch upon various other new avenues such as non-commutative and dipole deformations as well as possible non-conformal extensions of these models.


Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A.M. Uranga, Brane configurations for branes at conifolds, JHEP 01 (1999) 022 [hep-th/9811004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    K. Dasgupta and S. Mukhi, Brane constructions, conifolds and M-theory, Nucl. Phys. B 551 (1999) 204 [hep-th/9811139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Hanany and A. Zaffaroni, On the realization of chiral four-dimensional gauge theories using branes, JHEP 05 (1998) 001 [hep-th/9801134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Hanany and A.M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013 [hep-th/9805139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3 , Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  8. [8]
    D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Enciso and N. Kamran, Global causal propagator for the Klein-Gordon equation on a class of supersymmetric AdS backgrounds, Adv. Theor. Math. Phys. 14 (2010) 1183 [arXiv:1001.2200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  11. [11]
    H. Kihara, M. Sakaguchi and Y. Yasui, Scalar Laplacian on Sasaki-Einstein manifolds Y p,q , Phys. Lett. B 621 (2005) 288 [hep-th/0505259] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    T. Oota and Y. Yasui, Toric Sasaki-Einstein manifolds and Heun equations, Nucl. Phys. B 742 (2006) 275 [hep-th/0512124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06 (2011) 005 [arXiv:1103.2800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Sparks, New results in Sasaki-Einstein geometry, math/0701518 [INSPIRE].
  15. [15]
    J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    K. Sfetsos and D. Zoakos, Supersymmetric solutions based on Y p,q and L p,q,r , Phys. Lett. B 625 (2005) 135 [hep-th/0507169] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M. Dahl, Contact and symplectic geometry in electromagnetism,∼fdahl/casgiem.pdf, (2002).
  18. [18]
    H. Geiges, Contact geometry, math/0307242.
  19. [19]
    M. Bertolini, F. Bigazzi and A. Cotrone, New checks and subtleties for AdS/CFT and a-maximization, JHEP 12 (2004) 024 [hep-th/0411249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Cvetič, H. Lü, D.N. Page and C. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS 5 × T 1 1, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H. Kim, L. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5 , Phys. Rev. D 32 (1985) 389 [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  25. [25]
    R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys. 21 (1980) 2802 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 2. General analysis of prescriptions for dynamics, Class. Quant. Grav. 20 (2003) 3815 [gr-qc/0305012] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. [27]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    C. Baer, N. Ginoux and F. Pfaeffle, Wave equations on Lorentzian manifolds and quantization, arXiv:0806.1036.
  29. [29]
    A. Zettl, Sturm-Liouville theory, American Mathematical Society (AMS), Providence U.S.A. (2005).zbMATHGoogle Scholar
  30. [30]
    H. Weyl, Über die asymptotische Verteilung der Eigenwerte (on the asymptotic distribution of eigenvalues) (in German), in Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Gottingen Germany (1911), pg. 110.Google Scholar
  31. [31]
    H. Weyl, Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgeometrie (on the boundary value problem of radiation theory and asymptotic spectral geometry) (in German), J. Reine Angew. Math. 1913 (1913) 177.Google Scholar
  32. [32]
    V. Y. Ivrii, Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary, Funct. Anal. Appl. 14 (1980) 98.MathSciNetCrossRefGoogle Scholar
  33. [33]
    D.P. Jatkar and S. Randjbar-Daemi, Type IIB string theory on AdS 5 × T nn′ , Phys. Lett. B 460 (1999) 281 [hep-th/9904187] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11: predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    A. Ceresole, G. Dall’Agata and R. D’Auria, K K spectroscopy of type IIB supergravity on AdS 5 × T 11, JHEP 11 (1999) 009 [hep-th/9907216] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K. Dasgupta, O.J. Ganor and G. Rajesh, Vector deformations of N = 4 super Yang-Mills theory, pinned branes and arched strings, JHEP 04 (2001) 034 [hep-th/0010072] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    K. Dasgupta and M. Sheikh-Jabbari, Noncommutative dipole field theories, JHEP 02 (2002) 002 [hep-th/0112064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t-duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  42. [42]
    J. McOrist and A.B. Royston, Relating conifold geometries to NS5-branes, Nucl. Phys. B 849 (2011) 573 [arXiv:1101.3552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J.M. Maldacena and J.G. Russo, Large-N limit of noncommutative gauge theories, JHEP 09 (1999) 025 [hep-th/9908134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    C. Herzog, Q. Ejaz and I. Klebanov, Cascading RG flows from new Sasaki-Einstein manifolds, JHEP 02 (2005) 009 [hep-th/0412193] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    M. Bertolini, F. Bigazzi and A. Cotrone, Supersymmetry breaking at the end of a cascade of Seiberg dualities, Phys. Rev. D 72 (2005) 061902 [hep-th/0505055] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    K. Dasgupta, K. Oh and R. Tatar, Geometric transition, large-N dualities and MQCD dynamics, Nucl. Phys. B 610 (2001) 331 [hep-th/0105066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    E. Caceres, M.N. Mahato, L.A. Pando Zayas and V.G. Rodgers, Toward NS5 branes on the resolved cone over Y p,q , Phys. Rev. D 83 (2011) 066008 [arXiv:1007.3719] [INSPIRE].ADSGoogle Scholar
  49. [49]
    F. Chen, K. Dasgupta, P. Franche, S. Katz and R. Tatar, Supersymmetric configurations, geometric transitions and new non-Kähler manifolds, Nucl. Phys. B 852 (2011) 553 [arXiv:1007.5316] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    C. Vafa, Superstrings and topological strings at large-N, J. Math. Phys. 42 (2001) 2798 [hep-th/0008142] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. [51]
    M. Becker, K. Dasgupta, A. Knauf and R. Tatar, Geometric transitions, flops and non-Kähler manifolds. I, Nucl. Phys. B 702 (2004) 207 [hep-th/0403288] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    M. Atiyah, J.M. Maldacena and C. Vafa, An M-theory flop as a large-N duality, J. Math. Phys. 42 (2001) 3209 [hep-th/0011256] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    T. Oota and Y. Yasui, Explicit toric metric on resolved Calabi-Yau cone, Phys. Lett. B 639 (2006) 54 [hep-th/0605129] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    H. Lü and C. Pope, Resolutions of cones over Einstein-Sasaki spaces, Nucl. Phys. B 782 (2007) 171 [hep-th/0605222] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Martelli and J. Sparks, Resolutions of non-regular Ricci-flat Kähler cones, J. Geom. Phys. 59 (2009) 1175 [arXiv:0707.1674] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  56. [56]
    A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    K. Altmann, The versal deformation of an isolated toric Gorenstein singularity, alg-geom/9403004.
  58. [58]
    K. Altmann, Infinitesimal deformations and obstructions for toric singularities, alg-geom/9405008.
  59. [59]
    J.P. Gauntlett, D. Martelli, J. Sparks and S.-T. Yau, Obstructions to the existence of Sasaki-Einstein metrics, Commun. Math. Phys. 273 (2007) 803 [hep-th/0607080] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  60. [60]
    B.A. Burrington, J.T. Liu, M. Mahato and L.A. Pando Zayas, Towards supergravity duals of chiral symmetry breaking in Sasaki-Einstein cascading quiver theories, JHEP 07 (2005) 019 [hep-th/0504155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    J. Maldacena and D. Martelli, The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov-Strassler theory, JHEP 01 (2010) 104 [arXiv:0906.0591] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  62. [62]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    S. Fidanza, R. Minasian and A. Tomasiello, Mirror symmetric SU(3) structure manifolds with NS fluxes, Commun. Math. Phys. 254 (2005) 401 [hep-th/0311122] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. [64]
    A. Tomasiello, Topological mirror symmetry with fluxes, JHEP 06 (2005) 067 [hep-th/0502148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Gross, Topological mirror symmetry, math/9909015 [INSPIRE].
  66. [66]
    F. Chen, K. Dasgupta, P. Franche and R. Tatar, Toward the gravity dual of heterotic small instantons, Phys. Rev. D 83 (2011) 046006 [arXiv:1010.5509] [INSPIRE].ADSGoogle Scholar
  67. [67]
    N. Halmagyi, Missing mirrors: type IIA supergravity on the resolved conifold, arXiv:1003.2121 [INSPIRE].
  68. [68]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    E. O Colgain and O. Varela, Consistent reductions from D = 11 beyond Sasaki-Einstein, Phys. Lett. B 703 (2011) 180 [arXiv:1106.4781] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the superconformal index of N = 1 IR fixed points: a holographic check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    F. Canoura, J.D. Edelstein, L.A. Pando Zayas, A.V. Ramallo and D. Vaman, Supersymmetric branes on AdS 5 × Y p,q and their field theory duals, JHEP 03 (2006) 101 [hep-th/0512087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    N. Dunford and J.T. Schwartz, Linear operators II, Wiley, New York U.S.A. (1988).zbMATHGoogle Scholar
  75. [75]
    M. Marletta and A. Zettl, The Friedrichs extension of singular differential operators, J. Diff. Eq. 160 (2000) 404.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Fang Chen
    • 1
  • Keshav Dasgupta
    • 1
  • Alberto Enciso
    • 2
  • Niky Kamran
    • 3
  • Jihye Seo
    • 1
  1. 1.Ernest Rutherford Physics BuildingMcGill UniversityMontréalCanada
  2. 2.Instituto de Ciencias MatemáticasConsejo Superior de Investigaciones CientíficasMadridSpain
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontréalCanada

Personalised recommendations