QED coupled to QEG

Article

Abstract

We discuss the non-perturbative renormalization group flow of Quantum Electrodynamics (QED) coupled to Quantum Einstein Gravity (QEG) and explore the possibilities for defining its continuum limit at a fixed point that would lead to a non-trivial, i.e. interacting field theory. We find two fixed points suitable for the Asymptotic Safety construction. In the first case, the fine-structure constant α vanishes at the fixed point and its infrared (“renormalized”) value is a free parameter not determined by the theory itself. In the second case, the fixed point value of α is non-zero, and its infrared value is a computable prediction of the theory.

Keywords

Models of Quantum Gravity Renormalization Group Asymptotic Freedom 

References

  1. [1]
    K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47 (1975) 773 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    G. Parisi, The theory of nonrenormalizable interactions. 1. The large-N expansion, Nucl. Phys. B 100 (1975) 368 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    G. Parisi, Symanzik’s improvement program, Nucl. Phys. B 254 (1985) 58 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Gawędzki and A. Kupiainen, Renormalization of a nonrenormalizable quantum field theory, Nucl. Phys. B 262 (1985) 33 [SPIRES].ADSGoogle Scholar
  6. [6]
    K. Gawędzki and A. Kupiainen, Exact renormalization for the Gross-Neveu model of quantum fields, Phys. Rev. Lett. 54 (1985) 2191 [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    K. Gawędzki and A. Kupiainen, Renormalizing the nonrenormalizable, Phys. Rev. Lett. 55 (1985) 363 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    B. Rosenstein, B. Warr and S.H. Park, Dynamical symmetry breaking in four Fermi interaction models, Phys. Rept. 205 (1991) 59 [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    C. de Calan, P.A. Faria da Veiga, J. Magnen and R. Sénéor, Constructing the three-dimensional Gross-Neveu model with a large number of flavor components, Phys. Rev. Lett. 66 (1991) 3233 [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    H. Römer, Mechanisms of spontaneous mass generation and solvable models, Acta Phys. Austriaca 45 (1976) 125 [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    H. Römer, Spontaneous mass generation, renormalization group and solvable U(N) symmetric models, Acta Phys. Austriaca, Suppl. 14 (1975) 521 [SPIRES].Google Scholar
  12. [12]
    M. Gell-Mann and F.E. Low, Quantum electrodynamics at small distances, Phys. Rev. 95 (1954) 1300 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    M. Göckeler et al., Is there a Landau pole problem in QED?, Phys. Rev. Lett. 80 (1998) 4119 [hep-th/9712244] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    S. Kim, J.B. Kogut and M.-P. Lombardo, On the triviality of textbook quantum electrodynamics, Phys. Lett. B 502 (2001) 345 [hep-lat/0009029] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    S. Kim, J.B. Kogut and M.-P. Lombardo, Gauged Nambu-Jona Lasinio studies of the triviality of quantum electrodynamics, Phys. Rev. D 65 (2002) 054015 [hep-lat/0112009] [SPIRES].ADSGoogle Scholar
  16. [16]
    H. Gies and J. Jaeckel, Renormalization flow of QED, Phys. Rev. Lett. 93 (2004) 110405 [hep-ph/0405183] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Poincaré Phys. Theor. A 20 (1974) 69.MathSciNetADSGoogle Scholar
  18. [18]
    M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys. B 378 (1992) 309 [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity: an Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979) [SPIRES].Google Scholar
  21. [21]
    S. Weinberg, Living with infinities, arXiv:0903.0568 [SPIRES].
  22. [22]
    S. Weinberg, Effective field theory, past and future, PoS(CD09)001 [arXiv:0908.1964] [SPIRES].
  23. [23]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher-derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?, Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    R. Percacci and D. Perini, Constraints on matter from asymptotic safety, Phys. Rev. D 67 (2003) 081503 [hep-th/0207033] [SPIRES].ADSGoogle Scholar
  29. [29]
    R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev. D 68 (2003) 044018 [hep-th/0304222] [SPIRES].ADSGoogle Scholar
  30. [30]
    R. Percacci and D. Perini, Should we expect a fixed point for Newton’s constant?, Class. Quant. Grav. 21 (2004) 5035 [hep-th/0401071] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The universal RG machine, arXiv:1012.3081 [SPIRES].
  34. [34]
    M. Reuter and F. Saueressig, Functional renormalization group equations, asymptotic safety, and quantum Einstein gravity, in Geometric and topological methods for quantum field theory, H. Ocampo, E. Pariguan and S. Paycha eds., Cambridge University Press, Cambridge U.K. (2010) [arXiv:0708.1317] [SPIRES].Google Scholar
  35. [35]
    M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5 [SPIRES].Google Scholar
  36. [36]
    R. Percacci, Asymptotic safety, in Approaches to quantum gravity: towards a new understanding of space, time and matter, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2009) [arXiv:0709.3851] [SPIRES].Google Scholar
  37. [37]
    S.P. Robinson and F. Wilczek, Gravitational correction to running of gauge couplings, Phys. Rev. Lett. 96 (2006) 231601 [hep-th/0509050] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    S.P. Robinson, Two quantum effects in the theory of gravitation, Ph.D. Thesis, MIT, (2005).Google Scholar
  39. [39]
    A.R. Pietrykowski, Gauge dependence of gravitational correction to running of gauge couplings, Phys. Rev. Lett. 98 (2007) 061801 [hep-th/0606208] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    D.J. Toms, Quantum gravity and charge renormalization, Phys. Rev. D 76 (2007) 045015 [arXiv:0708.2990] [SPIRES].MathSciNetADSGoogle Scholar
  41. [41]
    D. Ebert, J. Plefka and A. Rodigast, Absence of gravitational contributions to the running Yang-Mills coupling, Phys. Lett. B 660 (2008) 579 [arXiv:0710.1002] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    Y. Tang and Y.-L. Wu, Gravitational contributions to the running of gauge couplings, Commun. Theor. Phys. 54 (2010) 1040 [arXiv:0807.0331] [SPIRES].ADSMATHCrossRefGoogle Scholar
  43. [43]
    D.J. Toms, Cosmological constant and quantum gravitational corrections to the running fine structure constant, Phys. Rev. Lett. 101 (2008) 131301 [arXiv:0809.3897] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    D.J. Toms, Quantum gravity, gauge coupling constants and the cosmological constant, Phys. Rev. D 80 (2009) 064040 [arXiv:0908.3100] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    D.J. Toms, Quantum gravitational contributions to quantum electrodynamics, Nature 468 (2010) 56 [arXiv:1010.0793] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    M.M. Anber, J.F. Donoghue and M. El-Houssieny, Running couplings and operator mixing in the gravitational corrections to coupling constants, arXiv:1011.3229 [SPIRES].
  47. [47]
    J. Ellis and N.E. Mavromatos, On the interpretation of gravitational corrections to gauge couplings, arXiv:1012.4353 [SPIRES].
  48. [48]
    J.-E. Daum, U. Harst and M. Reuter, Running gauge coupling in asymptotically safe quantum gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    J.E. Daum, U. Harst and M. Reuter, Non-perturbative QEG corrections to the Yang-Mills β-function, arXiv:1005.1488 [SPIRES].
  50. [50]
    D.F. Litim, Optimisation of the exact renormalisation group, Phys. Lett. B 486 (2000) 92 [hep-th/0005245] [SPIRES].ADSGoogle Scholar
  51. [51]
    A. Bonanno and M. Reuter, Entropy signature of the running cosmological constant, JCAP 08 (2007) 024 [arXiv:0706.0174] [SPIRES].ADSGoogle Scholar
  52. [52]
    A. Bonanno and M. Reuter, Primordial entropy production and Λ-driven inflation from quantum Einstein gravity, J. Phys. Conf. Ser. 140 (2008) 012008 [arXiv:0803.2546] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [SPIRES].ADSGoogle Scholar
  54. [54]
    U. Amaldi, W. de Boer, P.H. Frampton, H. Fürstenau and J.T. Liu, Consistency checks of grand unified theories, Phys. Lett. B 281 (1992) 374 [SPIRES].ADSGoogle Scholar
  55. [55]
    M. Reuter and H. Weyer, Quantum gravity at astrophysical distances?, JCAP 12 (2004) 001 [hep-th/0410119] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of MainzMainzGermany

Personalised recommendations