Advertisement

The 3-Lie algebra (2,0) tensor multiplet and equations of motion on loop space

  • Constantinos Papageorgakis
  • Christian Sämann
Article

Abstract

We show that a recently found set of supersymmetric equations of motion for a 3-Lie algebra-valued (2,0) tensor multiplet finds a natural interpretation as supersymmetric gauge field equations on loop space. We find that BPS solutions to these equations yield a previously proposed nonabelian extension of the selfdual string. We describe an ADHMN-like construction that allows for the explicit construction of such BPS solutions.

Keywords

Supersymmetric gauge theory D-branes M-Theory Brane Dynamics in Gauge Theories 

References

  1. [1]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Bagger and N. Lambert, Three-algebras and \( \mathcal{N} = 6 \) Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N. Lambert and C. Papageorgakis, Nonabelian (2,0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Kawamoto, T. Takimi and D. Tomino, Branes from non-abelian (2,0) tensor multiplet with 3-algebra, arXiv:1103.1223 [SPIRES].
  9. [9]
    Y. Honma, M. Ogawa and S. Shiba, Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra, JHEP 04 (2011) 117 [arXiv:1103.1327] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    P.G.O. Freund and R.I. Nepomechie, Unified geometry of antisymmetric tensor gauge fields and gravity, Nucl. Phys. B 199 (1982) 482 [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston U.S.A. (2007).Google Scholar
  12. [12]
    C. Sämann, Constructing self-dual strings, arXiv:1007.3301 [SPIRES].
  13. [13]
    A. Gustavsson, A reparametrization invariant surface ordering, JHEP 11 (2005) 035 [hep-th/0508243] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Gustavsson, The non-abelian tensor multiplet in loop space, JHEP 01 (2006) 165 [hep-th/0512341] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S. Kawamoto and N. Sasakura, Open membranes in a constant C-field background and noncommutative boundary strings, JHEP 07 (2000) 014 [hep-th/0005123] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M-theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    K.-W. Huang and W.-H. Huang, Lie 3-algebra non-abelian (2,0) theory in loop space, arXiv:1008.3834 [SPIRES].
  19. [19]
    A. Basu and J.A. Harvey, The M2-M5 brane system and a generalized Nahm’s equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A. Gustavsson, Loop space, (2,0) theory and solitonic strings, JHEP 12 (2006) 066 [hep-th/0608141] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    W. Nahm, A simple formalism for the BPS monopole, Phys. Lett. B 90 (1980) 413 [SPIRES].ADSGoogle Scholar
  22. [22]
    W. Nahm, All selfdual multi-monopoles for arbitrary gauge groups, Presented at Int. Summer Inst. on Theoretical Physics, Freiburg, West Germany, August 31 – September 11 1981.Google Scholar
  23. [23]
    W. Nahm, The construction of all selfdual multi-monopoles by the ADHM method, talk at the Meeting on Monopoles in Quantum Field Theory, ICTP, Trieste 1981.Google Scholar
  24. [24]
    V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126. zbMATHGoogle Scholar
  25. [25]
    J.A. de Azcarraga and J.M. Izquierdo, n-ary algebras: a review with applications, J. Phys. A 43 (2010) 293001 [arXiv:1005.1028] [SPIRES].Google Scholar
  26. [26]
    J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP 06 (2008) 075 [arXiv:0805.1012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, \( \mathcal{N} = 8 \) superconformal gauge theories and M2 branes, JHEP 01 (2009) 078 [arXiv:0805.1087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003 [arXiv:0805.1202] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. De Medeiros, J.M. Figueroa-O’Farrill and E. Mendez-Escobar, Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space, JHEP 07 (2008) 111 [arXiv:0805.4363] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2,0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [SPIRES].ADSGoogle Scholar
  31. [31]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    H. Nastase, C. Papageorgakis and S. Ramgoolam, The fuzzy S 2 structure of M2-M5 systems in ABJM membrane theories, JHEP 05 (2009) 123 [arXiv:0903.3966] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S.A. Cherkis and C. Sämann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808] [SPIRES].ADSGoogle Scholar
  37. [37]
    S. Palmer and C. Saemann, Constructing generalized self-dual strings, in preparation.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Department of Mathematics and Maxwell Institute of Mathematical SciencesHeriot-Watt UniversityEdinburghU.K.

Personalised recommendations