LHC searches for non-chiral weakly charged multiplets

Article

Abstract

In this paper we consider vector representations of fermions in multiplets of SU(2)L with a lightest neutral state, a notable example of which is the wino LSP in anomaly-mediated models. Because of the expected small one-loop-level splitting between charged and neutral states, the path length in the detector is finite but short so the signature is distinctive but challenging. Our analysis determines the LHC reach of models with additional weakly charged vector-like matter using similar search strategies to existing studies of some specific models. Currently planned search strategies would fail to find such particles, although early LHC data could be used to better understand our signal and possible backgrounds.

Keywords

Beyond Standard Model Phenomenological Models Hadronic Colliders 

References

  1. [1]
    J. Wess and B. Zumino, Supergauge Transformations in Four-Dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].ADSGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    M. WEinstein, Conserved currents, their commutators and the symmetry structure of renormalizable theories of electromagnetic, weak and strong interactions, Phys. Rev. D8 (1973) 2511 [SPIRES].ADSGoogle Scholar
  5. [5]
    S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].ADSGoogle Scholar
  6. [6]
    L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  7. [7]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    P. Fileviez Perez, H.H. Patel, M.J. Ramsey-Musolf and K. Wang, Triplet Scalars and Dark Matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Drees and X. Tata, Signals for heavy exotics at hadron colliders and supercolliders, Phys. Lett. B 252 (1990) 695 [SPIRES].ADSGoogle Scholar
  12. [12]
    CDF collaboration, T. Aaltonen et al., Search for Long-Lived Massive Charged Particles in 1.96 TeV \( p\bar{p} \) Collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-f. Su, Discovering supersymmetry at the Tevatron in Wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    J.F. Gunion and S. Mrenna, A study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Asai, T. Moroi and T.T. Yanagida, Test of Anomaly Mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [SPIRES].ADSGoogle Scholar
  19. [19]
    DELPHI collaboration, P. Abreu et al., Search for charginos nearly mass-degenerate with the lightest neutralino, Eur. Phys. J. C 11 (1999) 1 [hep-ex/9903071] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    ALEPH collaboration, D. Decamp et al., A precise determination of the number of families with light neutrinos and of the Z boson partial widths, Phys. Lett. B 235 (1990) 399 [SPIRES].ADSGoogle Scholar
  21. [21]
    OPAL collaboration, G. Abbiendi et al., Search for nearly mass-degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [SPIRES].ADSGoogle Scholar
  22. [22]
    S.D. Thomas and J.D. Wells, Phenomenology of Massive Vectorlike Doublet Leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    C.H. Chen, M. Drees and J.F. Gunion, Searching for Invisible and Almost Invisible Particles at e + eColliders, Phys. Rev. Lett. 76 (1996) 2002 [hep-ph/9512230] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    C. Paus on behalf of the CMS collaboration, Trigger Strategies and Early Physics at CMS, Prepared for Berkeley Workshop on Physics Opportunities with Early LHC Data, Berkeley, USA, 6–8 May (2009).Google Scholar
  25. [25]
    CMS collaboration, G.L. Bayatian et al., CMS physics: Technical design report.Google Scholar
  26. [26]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment -Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].
  27. [27]
    CMS Trigger and Data Acquisition Group collaboration, W. Adam et al., The CMS high level trigger, Eur. Phys. J. C 46 (2006) 605 [hep-ex/0512077] [SPIRES].Google Scholar
  28. [28]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    S. Cucciarelli, M. Konecki, D. Kotlinski and T. Todorov, Track reconstruction, primary vertex finding and seed generation with the pixel detector, CERN-CMS-NOTE-2006-026.Google Scholar
  31. [31]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].ADSMATHCrossRefGoogle Scholar
  32. [32]
    DELPHI collaboration, J. Abdallah et al., Search for SUSY in the AMSB scenario with the DELPHI detector, Eur. Phys. J. C 34 (2004) 145 [hep-ex/0403047] [SPIRES].ADSGoogle Scholar
  33. [33]
    J.L. Feng and T. Moroi, Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 095004 [hep-ph/9907319] [SPIRES].ADSGoogle Scholar
  34. [34]
    D0 collaboration, V.M. Abazov et al., Search for Long-Lived Charged Massive Particles with the D0 Detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    A.R. Raklev, Massive Metastable Charged (S)Particles at the LHC, Mod. Phys. Lett. A 24 (2009) 1955 [arXiv:0908.0315] [SPIRES].ADSGoogle Scholar
  36. [36]
    D.A. Ross and M.J.G. Veltman, Neutral Currents in Neutrino Experiments, Nucl. Phys. B 95 (1975) 135 [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    J.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [SPIRES].ADSGoogle Scholar
  38. [38]
    J.R. Forshaw, D.A. Ross and B.E. White, Higgs mass bounds in a triplet model, JHEP 10 (2001) 007 [hep-ph/0107232] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    J.R. Forshaw, A. Sabio Vera and B.E. White, Mass bounds in a model with a triplet Higgs, JHEP 06 (2003) 059 [hep-ph/0302256] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    M.-C. Chen, S. Dawson and T. Krupovnickas, Higgs triplets and limits from precision measurements, Phys. Rev. D 74 (2006) 035001 [hep-ph/0604102] [SPIRES].ADSGoogle Scholar
  41. [41]
    P.H. Chankowski, S. Pokorski and J. Wagner, (Non)decoupling of the Higgs triplet effects, Eur. Phys. J. C 50 (2007) 919 [hep-ph/0605302] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    I. Dorsner and P. Fileviez Perez, Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks, Nucl. Phys. B 723 (2005) 53 [hep-ph/0504276] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Matthew R. Buckley
    • 1
  • Lisa Randall
    • 2
  • Brian Shuve
    • 2
  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Harvard UniversityCambridgeU.S.A.

Personalised recommendations