LHC bounds on large extra dimensions

  • Roberto Franceschini
  • Pier Paolo Giardino
  • Gian F. Giudice
  • Paolo Lodone
  • Alessandro Strumia
Open Access


We derive new dominant bounds on the coefficient of the effective operator generated by tree-level graviton exchange in large extra dimensions from ppjj data at LHC: MT > 2.1 TeV (ATLAS after 3.1/pb of integrated luminosity), MT > 3.4 TeV (CMS after 36/pb), MT > 3.2 TeV (ATLAS after 36/pb). We clarify the role of on-shell graviton exchange and compare the full graviton amplitude to data, setting bounds on the fundamental quantum-gravity scale.


Phenomenology of Large extra dimensions 


  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].ADSGoogle Scholar
  2. [2]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J.L. Hewett, Indirect collider signals for extra dimensions, Phys. Rev. Lett. 82 (1999) 4765 [hep-ph/9811356] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    G.F. Giudice and A. Strumia, Constraints on extra dimensional theories from virtual graviton exchange, Nucl. Phys. B 663 (2003) 377 [hep-ph/0301232] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Transplanckian collisions at the LHC and beyond, Nucl. Phys. B 630 (2002) 293 [hep-ph/0112161] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    LEP-II Diphoton working group, Combination of LEP-II results for the reaction e + e γγ(γ) and interpretations, LEP2FF/02-02.
  8. [8]
    ALEPH collaboration, Fermion pair production in e + e collisions at high energies and limits on physics beyond the standard model, CERN-ALEPH-2001-019 (2001).
  9. [9]
    DELPHI collaboration, Results on fermion-pair production at LEP running in 2000, DELPHI-2001-094-CONF-522 (2001).
  10. [10]
    L3 collaboration, Search for new physics phenomena in fermion-pair production in e + e collisions at centre-of-mass energies up to 209 GeV, talk given at ICHEP2002, July 24–31, Amsterdam, The Netherlands (2002) [L3 NOTE 2759].Google Scholar
  11. [11]
    OPAL collaboration, Limits on low scale quantum gravity in extra spatial dinemsions form measurements of e + e e + e at LEP 2, OPAL Physics Note PN471.Google Scholar
  12. [12]
    H1 collaboration, A search for contact interactions at HERA, talk given at ICHEP2002, July 24–31, Amsterdam, The Netherlands (2002).Google Scholar
  13. [13]
    ZEUS collaboration, Search for large extra dimensions, finite quark radius and contact interactions in ep collisions at HERA, talk given at EPS 2001, July 12–18, Budapest, Hungary (2001).Google Scholar
  14. [14]
    CDF and D0 collaboration, G.L. Landsberg, Collider searches for extra dimensions, hep-ex/0412028 [SPIRES].
  15. [15]
    D0 collaboration, V.M. Abazov et al., Measurement of dijet angular distributions at \( \sqrt {s} = 1.96 \) TeV and searches for quark compositeness and extra spatial dimensions, Phys. Rev. Lett. 103 (2009) 191803 [arXiv:0906.4819] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    CMS collaboration, Search for large extra dimensions in dimuon events in pp collisions at \( \sqrt {s} = 7 \) TeV, http://cdsweb.cern.ch/record/1335097/files/EXO-10-020-pas.pdf.
  17. [17]
    CMS collaboration, V. Khachatryan et al., Measurement of dijet angular distributions and search for quark compositeness in pp collisions at 7 TeV, arXiv:1102.2020 [SPIRES].
  18. [18]
    G. Landsberg, Quest for new physics with the first LHC data at CMS, seminar at CERN, Switzerland (2011).Google Scholar
  19. [19]
    LEP working group, Combination of the LEP II f f results, LEP2FF/02-03.Google Scholar
  20. [20]
    D0 collaboration, J.A. Green, Searches for compositeness at the Tevatron, hep-ex/0004035 [SPIRES].
  21. [21]
    NuTeV collaboration, K.S. McFarland et al., Measurement of sin2W) from neutrino nucleon scattering at NuTeV, hep-ex/9806013 [SPIRES].
  22. [22]
    S.B. Giddings and S.D. Thomas, High energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [SPIRES].ADSGoogle Scholar
  23. [23]
    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    T. Banks and W. Fischler, A model for high energy scattering in quantum gravity, hep-th/9906038 [SPIRES].
  25. [25]
    P. Creminelli and A. Strumia, Collider signals of brane fluctuations, Nucl. Phys. B 596 (2001) 125 [hep-ph/0007267] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, G. Aad et al., Search for quark contact interactions in dijet angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV Measured with the ATLAS detector, Phys. Lett. B 694 (2011) 327 [arXiv:1009.5069] [SPIRES].ADSGoogle Scholar
  27. [27]
    CMS collaboration, V. Khachatryan et al., Search for dijet resonances in 7 TeV pp collisions at CMS, Phys. Rev. Lett. 105 (2010) 211801 [arXiv:1010.0203] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [SPIRES].ADSGoogle Scholar
  30. [30]
    CMS collaboration, S. Chatrchyan et al., Search for large extra dimensions in the diphoton final state at the Large Hadron Collider, arXiv:1103.4279 [SPIRES].
  31. [31]
    I. Belotelov et al., Search for ADD extra dimensional gravity in dimuon channel with the CMS detector, CMS-NOTE-2006-076.
  32. [32]
    ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector, arXiv:1103.3864 [SPIRES].
  33. [33]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    G.F. Giudice, T. Plehn and A. Strumia, Graviton collider effects in one and more large extra dimensions, Nucl. Phys. B 706 (2005) 455 [hep-ph/0408320] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    A.V. Kisselev, Interactions of cosmic neutrinos with nucleons in the RS model, Eur. Phys. J. C 42 (2005) 217 [hep-ph/0412376] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A.V. Kisselev, RS model with a small curvature and two-photon production at the LHC, JHEP 09 (2008) 039 [arXiv:0804.3941] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Roberto Franceschini
    • 1
  • Pier Paolo Giardino
    • 2
  • Gian F. Giudice
    • 3
  • Paolo Lodone
    • 4
  • Alessandro Strumia
    • 2
    • 5
  1. 1.Institut de Théorie des Phénomènes Physiques, EPFLLausanneSwitzerland
  2. 2.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItaly
  3. 3.CERN, Theory DivisionGeneva 23Switzerland
  4. 4.Scuola Normale Superiore and INFNPisaItaly
  5. 5.NICPB, Ravala 10TallinnEstonia

Personalised recommendations