Moduli-induced vacuum destabilisation

  • Joseph P. Conlon
  • Francisco G. Pedro


We look for ways to destabilise the vacuum. We describe how dense matter environments source a contribution to moduli potentials and analyse the conditions required to initiate either decompactification or a local shift in moduli vevs. We consider astrophysical objects such as neutron stars as well as cosmological and black hole singularities. Regrettably neutron stars cannot destabilise realistic Planck coupled moduli, which would require objects many orders of magnitude denser. However gravitational collapse, either in matter-dominated universes or in black hole formation, inevitably leads to a destabilisation of the compact volume causing a super-inflationary expansion of the extra dimensions.


Strings and branes phenomenology Phenomenology of Large extra dimensions 


  1. [1]
    J. Khoury and A. Weltman, Chameleon fields: awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    P. Brax, C. van de Bruck and A.C. Davis, Is the radion a chameleon?, JCAP 11 (2004) 004 [astro-ph/0408464] [SPIRES].ADSGoogle Scholar
  3. [3]
    D.R. Green, E. Silverstein and D. Starr, Attractor explosions and catalyzed vacuum decay, Phys. Rev. D 74 (2006) 024004 [hep-th/0605047] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    P. Brax, C. van de Bruck, A.-C. Davis and D. Shaw, The dilaton and modified gravity, Phys. Rev. D 82 (2010) 063519 [arXiv:1005.3735] [SPIRES].ADSGoogle Scholar
  5. [5]
    L. Anguelova, V. Calo and M. Cicoli, Large volume string compactifications at finite temperature, JCAP 10 (2009) 025 [arXiv:0904.0051] [SPIRES].ADSGoogle Scholar
  6. [6]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α′-corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Collinucci, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, Four-modulus ’Swiss cheese’ chiral models, JHEP 07 (2009) 074 [arXiv:0811.4599] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.P. Conlon, Gauge threshold corrections for local string models, JHEP 04 (2009) 059 [arXiv:0901.4350] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse-square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago University Press, Chicago U.S.A. (1996), p. 664 [SPIRES].Google Scholar
  15. [15]
    R. Kallosh and S. Prokushkin, Supercosmology, hep-th/0403060 [SPIRES].
  16. [16]
    G. Veneziano, Scale factor duality for classical and quantum strings, Phys. Lett. B 265 (1991) 287 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    M. Gasperini and G. Veneziano, Pre-big bang in string cosmology, Astropart. Phys. 1 (1993) 317 [hep-th/9211021] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M. Gasperini and G. Veneziano, The pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    A.V. Smilga, Physics of thermal QCD, Phys. Rept. 291 (1997) 1 [hep-ph/9612347] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations