Advertisement

Anomaly mediated SUSY breaking scenarios in the light of cosmology and in the dark (matter)

  • Alexandre Arbey
  • Aldo Deandrea
  • Ahmad Tarhini
Open Access
Article

Abstract

Anomaly mediation is a popular and well motivated supersymmetry breaking scenario. Different possible detailed realisations of this set-up are studied and actively searched for at colliders. Apart from limits coming from flavour, low energy physics and direct collider searches, these models are usually constrained by the requirement of reproducing the observations on dark matter density in the universe. We reanalyse these bounds and in particular we focus on the dark matter bounds both considering the standard cosmological model and alternative cosmological scenarios. These scenarios do not change the observable cosmology but relic dark matter density bounds strongly depend on them. We consider few benchmark points excluded by standard cosmology dark matter bounds and suggest that loosening the dark matter constraints is necessary in order to avoid a too strong (cosmological) model dependence in the limits that are obtained for these models. We also discuss briefly the implications for phenomenology and in particular at the Large Hadron Collider.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    A. Arbey and F. Mahmoudi, SUSY constraints from relic density: high sensitivity to pre-BBN expansion rate, Phys. Lett. B 669 (2008) 46 [arXiv:0803.0741] [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Arbey and F. Mahmoudi, SUSY constraints, relic density and very early universe, JHEP 05 (2010) 051 [arXiv:0906.0368] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    A. Arbey and F. Mahmoudi, LHC and ILC data and the early universe properties, Nuovo Cim. C 33 (2010) 151 [arXiv:1002.4096] [SPIRES].Google Scholar
  4. [4]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    A. Pomarol and R. Rattazzi, Sparticle masses from the superconformal anomaly, JHEP 05 (1999) 013 [hep-ph/9903448] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    D.-W. Jung and J.Y. Lee, Anomaly-mediated supersymmetry breaking demystified, JHEP 03 (2009) 123 [arXiv:0902.0464] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    H. Baer et al., Gaugino anomaly mediated SUSY breaking: phenomenology and prospects for the LHC, JHEP 05 (2010) 069 [arXiv:1002.4633] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    K. Choi, K.S. Jeong and K.I. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Dermisek, H. Verlinde and L.-T. Wang, Hypercharged anomaly mediation, Phys. Rev. Lett. 100 (2008) 131804 [arXiv:0711.3211] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    A. Basboll, M. Hindmarsh and D.R.T. Jones, Anomaly mediation and cosmology, arxiv:1101.5622 [SPIRES].
  12. [12]
    H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arxiv:1004.3297] [SPIRES].ADSGoogle Scholar
  13. [13]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7:69: a Monte Carlo event generator for pp, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].
  14. [14]
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BKγ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arxiv:0710.2067] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  15. [15]
    F. Mahmoudi, SuperIso v2:3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579, online at http://superiso.in2p3.fr [arxiv:0808.3144] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    F. Mahmoudi, SuperIso v3:0, flavor physics observables calculations: Extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    A. Arbey and F. Mahmoudi, SuperIso Relic: a program for calculating relic density and flavor physics observables in supersymmetry, Comput. Phys. Commun. 181 (2010) 1277, oinline at http://superiso.in2p3.fr/relic [arxiv:0906.0369] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    A. Arbey and F. Mahmoudi, SuperIso Relic v3:0: a program for calculating relic density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun. 182 (2011) 1582 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    F. Mahmoudi, New constraints on supersymmetric models from b, JHEP 12 (2007) 026 [arxiv:0710.3791] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    CDF collaboration, Search for B s 0μ + μ and B d 0μ + μ Decays in 3:7 fb −1 of \( p\bar{p} \) Collisions with CDF II, CDF public note 9892 (2009).Google Scholar
  21. [21]
    A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from D(s)±μ ± ν and D(s)±τ ± ν, JHEP 04 (2009) 121 [arxiv:0902.2393] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al., Precision tests of the standard model with leptonic and semileptonic kaon decays, arxiv:0801.1817 [SPIRES].
  23. [23]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arxiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Prospects for hypercharged anomaly mediated SUSY breaking at the LHC, JHEP 10 (2009) 078 [arxiv:0908.4259] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    H. Baer, E.-K. Park, X. Tata and T.T. Wang, Collider and dark matter searches in models with mixed modulus-anomaly mediated SUSY breaking, JHEP 08 (2006) 041 [hep-ph/0604253] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Maniatis, The next-to-minimall supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arxiv:0906.0777] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arxiv:0910.1785] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    U. Ellwanger and C. Hugonie, NMSPEC: a Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].ADSGoogle Scholar
  31. [31]
    P. Salati, Quintessence and the relic density of neutralinos, Phys. Lett. B 571 (2003) 121 [astro-ph/0207396] [SPIRES].ADSGoogle Scholar
  32. [32]
    A. Arbey, in preparation, see http://superiso.in2p3.fr/relic/alterbbn.
  33. [33]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [SPIRES].ADSGoogle Scholar
  35. [35]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [SPIRES].ADSGoogle Scholar
  36. [36]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [SPIRES].ADSGoogle Scholar
  37. [37]
    N. Okada and O. Seto, Relic density of dark matter in brane world cosmology, Phys. Rev. D 70 (2004) 083531 [hep-ph/0407092] [SPIRES].ADSGoogle Scholar
  38. [38]
    K. Jedamzik, Big Bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [SPIRES].ADSGoogle Scholar
  39. [39]
    W. Beenakker et al., The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    H. Baer and X. Tata, Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev. D 47 (1993) 2739 [SPIRES].ADSGoogle Scholar
  41. [41]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino-neutralino production at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Alexandre Arbey
    • 1
    • 2
    • 3
    • 4
  • Aldo Deandrea
    • 1
  • Ahmad Tarhini
    • 1
  1. 1.Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNLVilleurbanne CedexFrance
  2. 2.CERN Theory Division, Physics DepartmentGeneva 23Switzerland
  3. 3.Centre de Recherche Astrophysique de Lyon, Observatoire de Lyon, CNRS, UMR 5574Saint-Genis Laval cedexFrance
  4. 4.Laboratoire de PhysiqueEcole Normale Supérieure de LyonLyonFrance

Personalised recommendations