Automation of one-loop QCD computations

  • Valentin Hirschi
  • Rikkert Frederix
  • Stefano Frixione
  • Maria Vittoria Garzelli
  • Fabio Maltoni
  • Roberto Pittau
Open Access
Article

Abstract

We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

Keywords

NLO Computations Hadronic Colliders QCD 

References

  1. [1]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [SPIRES].ADSMATHCrossRefGoogle Scholar
  4. [4]
    C.F. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    W.T. Giele and G. Zanderighi, On the Numerical Evaluation of One-Loop Amplitudes: The Gluonic Case, JHEP 06 (2008) 038 [arXiv:0805.2152] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of α s(M Z), JHEP 11 (2010) 050 [arXiv:1008.5313] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant k T clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet, http://fastjet.fr/.
  14. [14]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [SPIRES].ADSGoogle Scholar
  15. [15]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    T. Binoth et al., Precise predictions for LHC using a GOLEM, Nucl. Phys. Proc. Suppl. 183 (2008) 91 [arXiv:0807.0605] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    T. Binoth et al., Next-to-leading order QCD corrections to \( pp \to b\bar{b}b\bar{b} + X \) at the LHC: the quark induced case, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379] [SPIRES].ADSGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: ppttbb, JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, arXiv:1007.4716 [SPIRES].
  30. [30]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
  34. [34]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].ADSMATHCrossRefGoogle Scholar
  35. [35]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R. Pittau, Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun. 181 (2010) 1941 [arXiv:1006.3773] [SPIRES].ADSMATHCrossRefGoogle Scholar
  38. [38]
    G.P. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys. 27 (1978) 192 [SPIRES].ADSMATHCrossRefGoogle Scholar
  39. [39]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 1010 (2010) 097] [arXiv:0910.3130] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the R ξ gauge and in the Unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    R.K. Ellis and J.C. Sexton, QCD Radiative Corrections to Parton Parton Scattering, Nucl. Phys. B 269 (1986) 445 [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A Study of \( pp \to t\bar{t} + 2 \) jets at Next-To-Leading Order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W +2 jet and Z +2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].ADSGoogle Scholar
  52. [52]
    A. Signer and L.J. Dixon, Electron positron annihilation into four jets at next-to-leading order in α s, Phys. Rev. Lett. 78 (1997) 811 [hep-ph/9609460] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    L.J. Dixon and A. Signer, Complete O(α s 3 ) results for e + e → (γ, Z) → four jets, Phys. Rev. D 56 (1997) 4031 [hep-ph/9706285] [SPIRES].ADSGoogle Scholar
  54. [54]
    J.J. van der Bij and E.W.N. Glover, Z Boson Production And Decay Via Gluons, Nucl. Phys. B 313 (1989) 237 [SPIRES].ADSGoogle Scholar
  55. [55]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to W boson production with a massive b-quark jet pair at the Tevatron \( p\bar{p} \) collider, Phys. Rev. D 74 (2006) 034007 [hep-ph/0606102] [SPIRES].ADSGoogle Scholar
  58. [58]
    S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s ) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [SPIRES].ADSGoogle Scholar
  61. [61]
    S.-h. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN Large Hadron Collider, Phys. Rev. D 67 (2003) 075006 [hep-ph/0112109] [SPIRES].ADSGoogle Scholar
  62. [62]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    C. Weydert et al., Charged Higgs boson production in association with a top quark in MC@NLO, Eur. Phys. J. C 67 (2010) 617 [arXiv:0912.3430] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    L. Reina, S. Dawson and D. Wackeroth, QCD corrections to associated \( t\bar{t}h \) production at the Tevatron, Phys. Rev. D 65 (2002) 053017 [hep-ph/0109066] [SPIRES].ADSMATHGoogle Scholar
  65. [65]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].ADSGoogle Scholar
  66. [66]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    W. Beenakker et al., NLO QCD corrections to \( t\bar{t}h \) production in hadron collisions. ((U)), Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Valentin Hirschi
    • 1
  • Rikkert Frederix
    • 2
  • Stefano Frixione
    • 1
    • 3
  • Maria Vittoria Garzelli
    • 4
    • 5
  • Fabio Maltoni
    • 6
  • Roberto Pittau
    • 3
  1. 1.ITPP, EPFLLausanneSwitzerland
  2. 2.Institut für Theoretische PhysikUniversität Zürich, Winterthurerstrasse 190ZürichSwitzerland
  3. 3.PH Department, TH UnitCERNGeneva 23Switzerland
  4. 4.INFN, Sezione di MilanoMilanoItaly
  5. 5.Departamento de Física Teórica y del Cosmos y CAFPEUniversidad de GranadaGranadaSpain
  6. 6.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations