Probing the Tevatron \( t\overline t \) asymmetry at LHC

Article

Abstract

Weusean effective operator framework to study the contributions to the Tevatron \( t\overline t \) asymmetry from arbitrary vector bosons and scalars, and compare with their effect on the \( t\overline t \) tail at LHC. Our study shows, for example, that models reproducing the \( t\overline t \) asymmetry by exchange of Z′ and W′ bosons or colour-triplet scalars lead to a large enhancement in the \( t\overline t \) tail at LHC. This fact can be used to exclude these models as the sole explanation for the asymmetry, using the data already collected by CMS and ATLAS. Our analysis is model independent in the sense that we scan over all possible extra particles contributing to the asymmetry, and allow for general couplings. We also explore a class of Standard Model extensions which can accommodate the Tevatron asymmetry without contributing to the total \( t\overline t \) cross section at first order, so that the enhancement of the tail at Tevatron and LHC is moderate.

Keywords

Beyond Standard Model Hadronic Colliders 

References

  1. [1]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\overline p \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, arXiv:1101.0034 [SPIRES].
  4. [4]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].ADSGoogle Scholar
  5. [5]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    K. Blum et al., Implications of the CDF \( t\overline t \) forward-backward asymmetry for boosted top physics, arXiv:1102.3133 [SPIRES].
  7. [7]
    C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF \( t\overline t \) forward-backward asymmetry for hard top physics, arXiv:1103.2297 [SPIRES].
  8. [8]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].ADSGoogle Scholar
  9. [9]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, arXiv:1011.5976 [SPIRES].
  10. [10]
    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, arXiv:1012.4750 [SPIRES].
  11. [11]
    J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, arXiv:1101.4456 [SPIRES].
  12. [12]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top quark forward-backward asymmetry and same-sign top quark pairs, arXiv:1101.5625 [SPIRES].
  13. [13]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, arXiv:1102.0545 [SPIRES].
  15. [15]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for top flavor violating resonances, arXiv:1102.0018 [SPIRES].
  17. [17]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    J .A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [arXiv:1008.3562] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.A. Aguilar-Saavedra, Effective operators in top physics, PoS(ICHEP2010) 378 [arXiv:1008.3225] [SPIRES].
  21. [21]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  22. [22]
    J. Shu, T.M.P. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].ADSGoogle Scholar
  23. [23]
    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].ADSGoogle Scholar
  24. [24]
    Z. Ligeti, M. Schmaltz and G.M. Tavares, Explaining the \( t\overline t \) forward-backward asymmetry without dijet or flavor anomalies, arXiv:1103.2757 [SPIRES].
  25. [25]
    R.S. Chivukula, E.H. Simmons and C.P. Yuan, Axigluons cannot explain the observed top quark forward-backward asymmetry, Phys. Rev. D 82 (2010) 094009 [arXiv:1007.0260] [SPIRES].ADSGoogle Scholar
  26. [26]
    J .A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, arXiv:1103.3501 [SPIRES].
  28. [28]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, arXiv:1103.4835 [SPIRES].
  29. [29]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].ADSGoogle Scholar
  30. [30]
    J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].ADSGoogle Scholar
  31. [31]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].ADSGoogle Scholar
  32. [32]
    Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].ADSGoogle Scholar
  33. [33]
    K. Cheung and T.-C. Yuan, Top quark forward-backward asymmetry in the large invariant mass region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [SPIRES].ADSGoogle Scholar
  34. [34]
    V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron asymmetry of tops in a W′, Zmodel, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [SPIRES].ADSGoogle Scholar
  35. [35]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in \( t\overline t \) production from flavour symmetries, arXiv:1102.3374 [SPIRES].
  36. [36]
    P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].ADSGoogle Scholar
  37. [37]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].ADSGoogle Scholar
  38. [38]
    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\overline p \to t\overline t \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [SPIRES].ADSGoogle Scholar
  40. [40]
    C.-H. Chen, G. Cvetič and C.S. Kim, Forward-backward asymmetry of top quark in unparticle physics, Phys. Lett. B 694 (2011) 393 [arXiv:1009.4165] [SPIRES].ADSGoogle Scholar
  41. [41]
    G. Burdman, L. de Lima and R.D. Matheus, New strongly coupled sector at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 035012 [arXiv:1011.6380] [SPIRES].ADSGoogle Scholar
  42. [42]
    E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, arXiv:1011.6557 [SPIRES].
  43. [43]
    G. Isidori and J.F. Kamenik, Forward-Backward t tbar Asymmetry from Anomalous Stop Pair Production, arXiv:1103.0016 [SPIRES].
  44. [44]
    CDF collaboration, A search for boosted top quarks by CDF II, CDF note 10234 (2010).Google Scholar
  45. [45]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de GranadaGranadaSpain

Personalised recommendations