Advertisement

Symmetries of holographic minimal models

  • Matthias R. Gaberdiel
  • Thomas HartmanEmail author
Article

Abstract

It was recently proposed that a large N limit of a family of minimal model CFTs is dual to a certain higher spin gravity theory in AdS3, where the ’t Hooft coupling constant of the CFT is related to a deformation parameter of the higher spin algebra. We identify the asymptotic symmetry algebra of the higher spin theory for generic ’t Hooft parameter, and show that it coincides with a family of \( \mathcal{W} \)-algebras previously discovered in the context of the KP hierarchy. We furthermore demonstrate that this family of \( \mathcal{W} \)-algebras controls the representation theory of the minimal model CFTs in the ’t Hooft limit. This provides a non-trivial consistency check of the proposal and explains part of the underlying mechanism.

Keywords

AdS-CFT Correspondence Chern-Simons Theories Conformal and W Symmetry 

References

  1. [1]
    R.d.M. Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [SPIRES].ADSGoogle Scholar
  2. [2]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, arXiv:1011.4926 [SPIRES].
  3. [3]
    S.R. Coleman, Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [SPIRES].ADSGoogle Scholar
  4. [4]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [SPIRES].
  7. [7]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    E. Kiritsis and V. Niarchos, Large-N limits of 2D CFTs, quivers and AdS 3 duals, arXiv:1011.5900 [SPIRES].
  11. [11]
    M. Henneaux and S.-J. Rey, Nonlinear W(∞) algebra as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [SPIRES].ADSMathSciNetGoogle Scholar
  14. [14]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [SPIRES].ADSGoogle Scholar
  15. [15]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    A. Castro, A. Lepage-Jutier and A. Maloney, Higher spin theories in AdS 3 and a gravitational exclusion principle, JHEP 01 (2011) 142 [arXiv:1012.0598] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, A one parameter family of hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear W(KP) algebra, Commun. Math. Phys. 158 (1993) 17 [hep-th/9207092] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    B. Khesin and I. Zakharevich, Poisson-Lie group of pseudodifferential symbols, Commun. Math. Phys. 171 (1995) 475 [hep-th/9312088] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    B. Khesin and I. Zakharevich, Poisson Lie group of pseudodifferential symbols and fractional KP-KdV hierarchies, hep-th/9311125 [SPIRES].
  21. [21]
    C.N. Pope, L.J. Romans and X. Shen, The complete structure of W(∞), Phys. Lett. B 236 (1990) 173 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    P. Bowcock and G.M.T. Watts, On the classification of quantum W algebras, Nucl. Phys. B 379 (1992) 63 [hep-th/9111062] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, work in progress.Google Scholar
  24. [24]
    C.N. Pope, L.J. Romans and X. Shen, W(∞) and the Racah-Wigner algebra, Nucl. Phys. B 339 (1990) 191 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    B.L. Feigin, Lie algebras gl(λ) and cohomology of a Lie algebra of differential operators, Russ. Math. Surv. 43 (1988) 169.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    M. Bordemann, J. Hoppe and P. Schaller, Infinite dimensional matrix algebras, Phys. Lett. B 232 (1989) 199 [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    E.S. Fradkin and V.Y. Linetsky, Supersymmetric Racah basis, family of infinite dimensional superalgebras, SU(∞ +1|∞) and related 2D models, Mod. Phys. Lett. A 6 (1991) 617 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    C.N. Pope, L.J. Romans and X. Shen, A brief history of W(), talk given at Strings ’90, College Station, Texas, U.S.A. (1990)Google Scholar
  31. [31]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the role of higher spin symmetry, Ann. Phys. 177 (1987) 63 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    C.N. Pope and K.S. Stelle, SU(∞), SU+(∞) and area preserving algebras, Phys. Lett. B 226 (1989) 257 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [SPIRES].MathSciNetCrossRefGoogle Scholar
  35. [35]
    V.G. Drinfeld and V.V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [SPIRES].CrossRefGoogle Scholar
  36. [36]
    J. Balog, L. Feher, P. Forgacs, L. O’Raifeartaigh and A. Wipf, Kac-Moody realization of W algebras, Phys. Lett. B 244 (1990) 435 [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian formulation of general relativity, Ann. Phys. 88 (1974) 286 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    M. Bañados, K. Bautier, O. Coussaert, M. Henneaux and M. Ortiz, Anti-de Sitter/CFT correspondence in three-dimensional supergravity, Phys. Rev. D 58 (1998) 085020 [hep-th/9805165] [SPIRES].ADSGoogle Scholar
  41. [41]
    M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [42]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [SPIRES].MathSciNetADSGoogle Scholar
  43. [43]
    M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically Anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D 70 (2004) 044034 [hep-th/0404236] [SPIRES].MathSciNetADSGoogle Scholar
  44. [44]
    C.N. Pope, L.J. Romans and X. Shen, A new higher spin algebra and the lone star product, Phys. Lett. B 242 (1990) 401 [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    C.N. Pope, L.J. Romans and X. Shen, Ideals of Kac-Moody algebras and realizations of W(∞), Phys. Lett. B 245 (1990) 72 [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    E. Bergshoeff, M.A. Vasiliev and B. de Wit, The super-W(∞)(λ) algebra, Phys. Lett. B 256 (1991) 199 [SPIRES].ADSGoogle Scholar
  47. [47]
    E. Bergshoeff, B. de Wit and M.A. Vasiliev, The structure of the super-W(∞)(λ) algebra, Nucl. Phys. B 366 (1991) 315 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    I. Bakas and E. Kiritsis, Beyond the large-N limit: nonlinear W(∞) as symmetry of the SL(2,R)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [hep-th/9109029] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    I. Bakas, B. Khesin and E. Kiritsis, The logarithm of the derivative operator and higher spin algebras of W(∞) type, Commun. Math. Phys. 151 (1993) 233 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. [50]
    K. Yamagishi, A hamiltonian structure of KP hierarchy, W(1 + ∞) algebra and selfdual gravity, Phys. Lett. B 259 (1991) 436 –441 [SPIRES].MathSciNetADSGoogle Scholar
  51. [51]
    J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, Bihamiltonian structure of the KP hierarchy and the W(KP) algebra, Phys. Lett. B 266 (1991) 298 [SPIRES].MathSciNetADSGoogle Scholar
  52. [52]
    F. Yu and Y.-S. Wu, Hamiltonian structure, (anti)selfadjoint flows in KP hierarchy and the W(1 + ∞) and W(∞) algebras, Phys. Lett. B 263 (1991) 220 [SPIRES].MathSciNetADSGoogle Scholar
  53. [53]
    F. Yu and Y.-S. Wu, Nonlinearly deformed W(∞) algebra and second hamiltonian structure of KP hierarchy, Nucl. Phys. B 373 (1992) 713 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    B. Khesin and F. Malikov, Universal Drinfeld-Sokolov reduction and matrices of complex size, Commun. Math. Phys. 175 (1996) 113 [hep-th/9405116] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. [55]
    F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset construction for extended V irasoro algebras, Nucl. Phys. B 304 (1988) 371 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants, Nucl. Phys. B 304 (1988) 348 [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikETH ZurichZürichSwitzerland
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations