Advertisement

T-branes and Yukawa couplings

  • Chan-Chi Chiou
  • Alon E. Faraggi
  • Radu Tatar
  • William Walters
Article

Abstract

We consider various configurations of T-branes which are non-abelian bound states of branes and were recently introduced by Cecotti, Cordova, Heckman and Vafa. They are a refinement of the concept of monodromic branes featured in phenomenological F-theory models. We are particularly interested in the T-branes corresponding to Z 3 and Z 4 monodromies, which are used to break E 7 or E 8 gauge groups to SU(5) GUT . Our results imply that the up-type and down-type Yukawa couplings for the breaking of E 7 are zero, whereas up-type and down-type Yukawa couplings, together with right handed neutrino Yukawas are non-zero for the case of the breaking of E 8. The dimension four proton decay mediating term is avoided in models with either E 7 or E 8 breaking.

Keywords

F-Theory Intersecting branes models Supersymmetric gauge theory 

References

  1. [1]
    R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].
  2. [2]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Tatar and T. Watari, GUT relations from string theory compactifications, Nucl. Phys. B 810 (2009) 316 [arXiv:0806.0634] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    R. Tatar, Y. Tsuchiya and T. Watari, Right-handed neutrinos in F-theory compactifications, Nucl. Phys. B 823 (2009) 1 [arXiv:0905.2289] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Hayashi, R. Tatar, Y. Toda, T. Watari and M. Yamazaki, New aspects of heterotic-F theory duality, Nucl. Phys. B 806 (2009) 224 [arXiv:0805.1057] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    C. Vafa, Geometry of grand unification, arXiv:0911.3008 [SPIRES].
  8. [8]
    J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, arXiv:1010.5780 [SPIRES].
  12. [12]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, More on dimension-4 proton decay problem in F-theory — spectral surface, discriminant locus and monodromy, Nucl. Phys. B 840 (2010) 304 [arXiv:1004.3870] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J.J. Heckman, A. Tavanfar and C. Vafa, The point of E 8 in F-theory GUTs, JHEP 08 (2010) 040 [arXiv:0906.0581] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A.E. Faraggi, Proton stability in superstring derived models, Nucl. Phys. B 428 (1994) 111 [hep-ph/9403312] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A.E. Faraggi, Proton stability and superstring Z’, Phys. Lett. B 499 (2001) 147 [hep-ph/0011006] [SPIRES].ADSGoogle Scholar
  16. [16]
    J.C. Pati, The essential role of string-derived symmetries in ensuring proton stability and light neutrino masses, Phys. Lett. B 388 (1996) 532 [hep-ph/9607446] [SPIRES].ADSGoogle Scholar
  17. [17]
    C. Corianò, A.E. Faraggi and M. Guzzi, A novel string derived Z’ with stable proton, light-neutrinos and R-parity violation, Eur. Phys. J. C 53 (2008) 421 [arXiv:0704.1256] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    S.H. Katz and C. Vafa, Matter from geometry, Nucl. Phys. B 497 (1997) 146 [hep-th/9606086] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S. Katz and D.R. Morrison. Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, math.AG/9202002.
  20. [20]
    V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and neutrinos: Kaluza-Klein dilution of flavor hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1)PQ, JHEP 04 (2010) 095 [arXiv:0912.0272] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    E. Dudas and E. Palti, Froggatt-Nielsen models from E 8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    K.R. Dienes and J. March-Russell, Realizing higher-level gauge symmetries in string theory: new embeddings for string GUTs, Nucl. Phys. B 479 (1996) 113 [hep-th/9604112] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    K.R. Dienes, New constraints on SO(10) model-building from string theory, Nucl. Phys. B 488 (1997) 141 [hep-ph/9606467] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Chan-Chi Chiou
    • 1
  • Alon E. Faraggi
    • 1
  • Radu Tatar
    • 1
  • William Walters
    • 1
  1. 1.Division of Theoretical Physics, Department of Mathematical SciencesThe University of LiverpoolLiverpoolU.K.

Personalised recommendations