Advertisement

The SU(2) black hole entropy revisited

  • J. Engle
  • K. Noui
  • A. Perez
  • D. Pranzetti
Open Access
Article

Abstract

We study the state-counting problem that arises in the SU(2) black hole entropy calculation in loop quantum gravity. More precisely, we compute the leading term and the logarithmic correction of both the spherically symmetric and the distorted SU(2) black holes. Contrary to what has been done in previous works, we have to take into account “quantum corrections” in our framework in the sense that the level k of the Chern-Simons theory which describes the black hole is finite and not sent to infinity. Therefore, the new results presented here allow for the computation of the entropy in models where the quantum group corrections are important.

Keywords

Black Holes Quantum Groups Models of Quantum Gravity Chern-Simons Theories 

References

  1. [1]
    A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Rovelli, Quantum Gravity, Cambridge University Press, Cambridge U.K. (2004) [SPIRES].MATHCrossRefGoogle Scholar
  3. [3]
    T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press, Cambridge U.K. (2007).MATHCrossRefGoogle Scholar
  4. [4]
    A. Perez, Introduction to loop quantum gravity and spin foams, gr-qc/0409061 [SPIRES].
  5. [5]
    A. Ashtekar and B. Krishnan, Isolated and dynamical horizons and their applications, Living Rev. Rel. 7 (2004) 10 [gr-qc/0407042] [SPIRES].Google Scholar
  6. [6]
    A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [SPIRES].MathSciNetMATHGoogle Scholar
  7. [7]
    C. Beetle and J. Engle, Generic isolated horizons in loop quantum gravity, Class. Quant. Grav. 27 (2010) 235024 [arXiv:1007.2768] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant formulation of Type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Perez and D. Pranzetti, Static isolated horizons: SU(2) invariant phase space, quantization and black hole entropy, arXiv:1011.2961 [SPIRES].
  11. [11]
    K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    M. Domagala and J. Lewandowski, Black hole entropy from quantum geometry, Class. Quant. Grav. 21 (2004) 5233 [gr-qc/0407051] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    A. Ghosh and P. Mitra, Fine-grained state counting for black holes in loop quantum gravity, Phys. Rev. Lett. 102 (2009) 141302 [arXiv:0809.4170] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Ghosh and P. Mitra, Counting black hole microscopic states in loop quantum gravity, Phys. Rev. D 74 (2006) 064026 [hep-th/0605125] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    A. Ghosh and P. Mitra, Counting of black hole microstates, Indian J. Phys. 80 (2006) 867 [gr-qc/0603029] [SPIRES].Google Scholar
  16. [16]
    A. Ghosh and P. Mitra, An improved lower bound on black hole entropy in the quantum geometry approach, Phys. Lett. B 616 (2005) 114 [gr-qc/0411035] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A. Ghosh and P. Mitra, A bound on the log correction to the black hole area law, Phys. Rev. D 71 (2005) 027502 [gr-qc/0401070] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    I. Agullo, J. Fernando Barbero, E.F. Borja, J. Díaz-Polo and E.J.S. Villasenor, Detailed black hole state counting in loop quantum gravity, Phys. Rev. D 82 (2010) 084029 [arXiv:1101.3660] [SPIRES].ADSGoogle Scholar
  19. [19]
    I. Agullo, G.J. Fernando Barbero, E.F. Borja, J. Díaz-Polo and E.J.S. Villasenor, The combinatorics of the SU(2) black hole entropy in loop quantum gravity, Phys. Rev. D 80 (2009) 084006 [arXiv:0906.4529] [SPIRES].ADSGoogle Scholar
  20. [20]
    J.F. Barbero G. and E.J.S. Villasenor, On the computation of black hole entropy in loop quantum gravity, Class. Quant. Grav. 26 (2009) 035017 [arXiv:0810.1599] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J.F. Barbero G. and E.J.S. Villasenor, Generating functions for black hole entropy in Loop Quantum Gravity, Phys. Rev. D 77 (2008) 121502 [arXiv:0804.4784] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    I. Agullo, J.F. Barbero G., J. Díaz-Polo, E. Fernández-Borja and E.J.S. Villasenor, Black hole state counting in LQG: A number theoretical approach, Phys. Rev. Lett. 100 (2008) 211301 [arXiv:0802.4077] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H. Sahlmann, Entropy calculation for a toy black hole, Class. Quant. Grav. 25 (2008) 055004 [arXiv:0709.0076] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    H. Sahlmann, Toward explaining black hole entropy quantization in loop quantum gravity, Phys. Rev. D 76 (2007) 104050 [arXiv:0709.2433] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    R.K. Kaul and P. Majumdar, Quantum black hole entropy, Phys. Lett. B 439 (1998) 267 [gr-qc/9801080] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Das, R.K. Kaul and P. Majumdar, A new holographic entropy bound from quantum geometry, Phys. Rev. D 63 (2001) 044019 [hep-th/0006211] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    E.R. Livine and D.R. Terno, Quantum black holes: Entropy and entanglement on the horizon, Nucl. Phys. B 741 (2006) 131 [gr-qc/0508085] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L. Freidel and E.R. Livine, The Fine Structure of SU(2) Intertwiners from U(N) Representations, J. Math. Phys. 51 (2010) 082502 [arXiv:0911.3553] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E.R. Livine and D.R. Terno, The entropic boundary law in BF theory, Nucl. Phys. B 806 (2009) 715 [arXiv:0805.2536] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    E.R. Livine and D.R. Terno, Bulk Entropy in Loop Quantum Gravity, Nucl. Phys. B 794 (2008) 138 [arXiv:0706.0985] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Achucarro and P. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 85 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    E. Witten, 2+1 dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  35. [35]
    C. Meusburger and K. Noui, Combinatorial quantisation of the Euclidean torus universe, Nucl. Phys. B 841 (2010) 463 [arXiv:1007.4615] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    V. Chary and A. P ressley, A guide to quantum groups, Cambridge University Press (1994).Google Scholar
  37. [37]
    E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300 (1988) 360 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J. Engle, E. Livine, R. Pereira and C. Rovelli, LQG vertex with finite Immirzi parameter, Nucl. Phys. B 799 (2008) 136 [arXiv:0711.0146] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    L. Freidel and K. Krasnov, A New Spin Foam Model for 4d Gravity, Class. Quant. Grav. 25 (2008) 125018 [arXiv:0708.1595] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Y. Ding, M. Han and C. Rovelli, Generalized Spinfoams, [arXiv:1011.2149] [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PhysicsFlorida Atlantic UniversityBoca RatonU.S.A.
  2. 2.Laboratoire de Mathématiques et Physique Théorique,1Parc de GrammontToursFrance
  3. 3.Centre de Physique Théorique,2Campus de LuminyMarseilleFrance

Personalised recommendations