Multiparton interactions with an x-dependent proton size

Article

Abstract

Theoretical arguments, supported by other indirect evidence, suggest that the wave function of high-x partons should be narrower than that of low-x ones. In this article, we present a modification to the variable impact parameter framework of Pythia 8 to model this effect. In particular, a Gaussian hadronic matter profile is introduced, with a width dependent on the x value of the constituent being probed. Results are compared against the default single-and double-Gaussian profiles, as well as an intermediate overlap function.

Keywords

QCD Phenomenology Phenomenological Models 

References

  1. [1]
    T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].ADSGoogle Scholar
  2. [2]
    H.-U. Bengtsson and T. Sjöstrand, The Lund Monte Carlo for hadronic processes: Pythia version 4.8, Comput. Phys. Commun. 46 (1987) 43 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    D. Amati, A. Stanghellini and S. Fubini, Theory of high-energy scattering and multiple production, Nuovo Cim. 26 (1962) 896 [SPIRES].CrossRefGoogle Scholar
  5. [5]
    V.A. Abramovskii, O.V. Kancheli and V.N. Gribov, Structure of inclusive spectra and fluctuations in inelastic processes caused by multiple-pomeron exchange, eConf C720906V1 (1972) 389 [SPIRES].Google Scholar
  6. [6]
    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to Pythia 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar
  9. [9]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    B. Alessandro et al., Hadron-hadron and cosmic-ray interactions at multi-TeV energies, arXiv:1101.1852 [SPIRES].
  11. [11]
    A. Buckley et al., General-purpose event generators for LHC physics, arXiv:1101.2599 [SPIRES].
  12. [12]
    G. Marchesini and B.R. Webber, Associated transverse energy in hadronic jet production, Phys. Rev. D 38 (1988) 3419 [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Marchesini et al., Herwig : a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — april 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [SPIRES].ADSGoogle Scholar
  15. [15]
    I. Borozan and M.H. Seymour, An eikonal model for multiparticle production in hadron hadron interactions, JHEP 09 (2002) 015 [hep-ph/0207283] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    M. Bähr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in Herwig ++, JHEP 07 (2008) 076 [arXiv:0803.3633] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    M. Bähr et al., Herwig ++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    T. Gleisberg et al., Event generation with Sherpa 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    M.G. Ryskin, A.D. Martin and V.A. Khoze, Soft processes at the LHC, I: multi-component model, Eur. Phys. J. C 60 (2009) 249 [arXiv:0812.2407] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A. Capella, U. Sukhatme, C.-I. Tan and J. Tran Thanh Van, Dual parton model, Phys. Rept. 236 (1994) 225 [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    V.N. Gribov, A Reggeon diagram technique, Sov. Phys. JETP 26 (1968) 414 [Zh. Eksp. Teor. Fiz. 53 (1967) 654] [SPIRES].ADSGoogle Scholar
  22. [22]
    R. Engel, Photoproduction within the two component dual parton model. 1. Amplitudes and cross-sections, Z. Phys. C 66 (1995) 203 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    R. Engel and J. Ranft, Hadronic photon-photon interactions at high-energies, Phys. Rev. D 54 (1996) 4244 [hep-ph/9509373] [SPIRES].ADSGoogle Scholar
  24. [24]
    F.W. Bopp, J. Ranft, R. Engel and S. Roesler, Antiparticle to particle production ratios in hadron-hadron and d-Au collisions in the DPMJET -III Monte Carlo, Phys. Rev. C 77 (2008) 014904 [hep-ph/0505035] [SPIRES].ADSGoogle Scholar
  25. [25]
    K. Werner, F.-M. Liu and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron gold collisions at RHIC, Phys. Rev. C 74 (2006) 044902 [hep-ph/0506232] [SPIRES].ADSGoogle Scholar
  26. [26]
    E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari and T. Stanev, Cosmic ray interaction event generator SIBY LL 2.1, Phys. Rev. D 80 (2009) 094003 [arXiv:0906.4113] [SPIRES].ADSGoogle Scholar
  27. [27]
    S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET -II model, Phys. Rev. D 83 (2011) 014018 [arXiv:1010.1869] [SPIRES].ADSGoogle Scholar
  28. [28]
    R.J. Glauber, High-energy collision theory, in Lectures in Theoretical Physics, volume I, W.E. Brittin and L.G. Dunham eds., Interscience, New York U.S.A. (1959), pg. 315.Google Scholar
  29. [29]
    E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].ADSGoogle Scholar
  31. [31]
    E. Avsar, G. Gustafson and L. Lönnblad, Diifractive excitation in DIS and pp collisions, JHEP 12 (2007) 012 [arXiv:0709.1368] [SPIRES].ADSGoogle Scholar
  32. [32]
    P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA recommended values of the fundamental physical constants: 2006, Rev. Mod. Phys. 80 (2008) 633 [arXiv:0801.0028] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim. A 42 (1965) 930 [SPIRES].ADSGoogle Scholar
  35. [35]
    L. Lukaszuk and A. Martin, Absolute upper bounds for ππ scattering, Nuovo Cim. A 52 (1967) 122 [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    A. Martin, The Froissart bound for inelastic cross-sections, Phys. Rev. D 80 (2009) 065013 [arXiv:0904.3724] [SPIRES].ADSGoogle Scholar
  37. [37]
    T.T. Wu, A. Martin, S.M. Roy and V. Singh, An upper bound on the total inelastic cross-section as a function of the total cross-section, arXiv:1011.1349 [SPIRES].
  38. [38]
    T.T. Chou and C.-N. Yang, Model of elastic high-energy scattering, Phys. Rev. 170 (1968) 1591 [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    H. Cheng, J.K. Walker and T.T. Wu, Impact picture and diffractive dissociation, Phys. Rev. D9 (1974) 749 [SPIRES].ADSGoogle Scholar
  40. [40]
    R. Henzi and P. Valin, Towards a blacker, edgier and larger proton, Phys. Lett. B 132 (1983) 443 [SPIRES].ADSGoogle Scholar
  41. [41]
    C. Bourrely, J. Soffer and T.T. Wu, Impact picture expectations for very high-energy elastic pp and \( p\overline p \) scattering, Nucl. Phys. B 247 (1984) 15 [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    L. Frankfurt, M. Strikman and C. Weiss, Small-x physics: from HERA to LHC and beyond, Ann. Rev. Nucl. Part. Sci. 55 (2005) 403 [hep-ph/0507286] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    L. Frankfurt, M. Strikman and C. Weiss, Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC, Phys. Rev. D 83 (2011) 054012 [arXiv:1009.2559] [SPIRES].ADSGoogle Scholar
  44. [44]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [SPIRES].MathSciNetADSGoogle Scholar
  45. [45]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [SPIRES].Google Scholar
  46. [46]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [SPIRES].ADSGoogle Scholar
  48. [48]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    E. Avsar, On the high energy behaviour of the total cross section in the QCD dipole model, JHEP 04 (2008) 033 [arXiv:0803.0446] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    C. Flensburg and G. Gustafson, Fluctuations, saturation and diffractive excitation in high energy collisions, JHEP 10 (2010) 014 [arXiv:1004.5502] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault and T. Ueda, Eccentricity and elliptic flow in proton-proton collisions from parton evolution, arXiv:1009.5643 [SPIRES].
  53. [53]
    M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A 18 (2003) 173 [hep-ph/0207047] [SPIRES].ADSGoogle Scholar
  54. [54]
    M. Diehl, Multiple interactions and generalized parton distributions, PoS(DIS2010) 223 [arXiv:1007.5477] [SPIRES].
  55. [55]
    A. Donnachie and P.V. Landshoff, Total cross-sections, Phys. Lett. B 296 (1992) 227 [hep-ph/9209205] [SPIRES].ADSGoogle Scholar
  56. [56]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  57. [57]
    G.A. Schuler and T. Sjöstrand, Hadronic diffractive cross-sections and the rise of the total cross-section, Phys. Rev. D 49 (1994) 2257 [SPIRES].ADSGoogle Scholar
  58. [58]
    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at \( \sqrt {s} = 900 \) GeV measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].ADSGoogle Scholar
  59. [59]
    ATLAS collaboration, Charged particle multiplicities in pp interactions at \( \sqrt {s} = 7 \) TeV measured with the ATLAS detector at the LHC, ATLAS-CONF-2010-024, CERN, Geneva Switzerland (2010).Google Scholar
  60. [60]
    ATLAS collaboration, Track-based underlying event measurements in pp collisions at \( \sqrt {s} = 900 \) GeV and 7 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2010-029, CERN, Geneva Switzerland (2010).Google Scholar
  61. [61]
    CDF collaboration, D. Kar and R. Field, Using Drell-Yan to probe the underlying event in run 2 at CDF, CDF Note 9351, Fermilab, Batavia U.S.A. (2008).Google Scholar
  62. [62]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations