Uniqueness theorem for black hole space-times with multiple disconnected horizons

Article

Abstract

We show uniqueness of stationary and asymptotically flat black hole spacetimes with multiple disconnected horizons and with two rotational Killing vector fields in the context of five-dimensional minimal supergravity (Einstein-Maxwell-Chern-Simons gravity). The novelty in this work is the introduction in the uniqueness theorem of intrinsic local charges measured near each horizon as well as the measurement of local fluxes besides the asymptotic charges that characterize a particular solution. A systematic method of defining the boundary conditions on the fields that specify a black hole space-time is given based on the study of its rod structure (domain structure). Also, an analysis of known solutions with disconnected horizons is carried out as an example of an application of this theorem.

”But the perfect scientist is also a gardener: he believes that beauty is knowledge.”

Gonçalo M. Tavares in Brief Notes on Science

Keywords

Black Holes in String Theory Black Holes 

References

  1. [1]
    R. Emparan and H.S. Reall, A rotating black ring in five dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    T. Harmark and P. Olesen, On the structure of stationary and axisymmetric metrics, Phys. Rev. D 72 (2005) 124017 [hep-th/0508208] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    Y. Morisawa and D. Ida, A boundary value problem for the five-dimensional stationary rotating black holes, Phys. Rev. D 69 (2004) 124005 [gr-qc/0401100] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    M. Rogatko, Uniqueness theorem for stationary black ring solution of σ-models in five dimensions, Phys. Rev. D 77 (2008) 124037 [arXiv:0805.1982] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    S. Hollands and S. Yazadjiev, A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes, Class. Quant. Grav. 25 (2008) 095010 [arXiv:0711.1722] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    S. Hollands and S. Yazadjiev, A uniqueness theorem for stationary Kaluza-Klein black holes, arXiv:0812.3036 [SPIRES].
  9. [9]
    S. Tomizawa, Y. Yasui and A. Ishibashi, A uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity, Phys. Rev. D 79 (2009) 124023 [arXiv:0901.4724] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, Uniqueness of extremal Kerr and Kerr-Newman black holes, Phys. Rev. D 81 (2010) 024033 [arXiv:0906.2367] [SPIRES].ADSGoogle Scholar
  11. [11]
    P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav. 27 (2010) 095001 [arXiv:0906.5565] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S. Tomizawa, Y. Yasui and A. Ishibashi, A uniqueness theorem for charged dipole rings in five- dimensional minimal supergravity, Phys. Rev. D 81 (2010) 084037 [arXiv:0911.4309] [SPIRES].ADSGoogle Scholar
  13. [13]
    T. Harmark, Domain structure of black hole space-times, Phys. Rev. D 80 (2009) 024019 [arXiv:0904.4246] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    J. Armas, P. Caputa and T. Harmark, work in progress.Google Scholar
  15. [15]
    A. Bouchareb et al., G2 generating technique for minimal D = 5 supergravity and black rings, Phys. Rev. D 76 (2007) 104032 [arXiv:0708.2361] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    G. Compere, S. de Buyl, E. Jamsin and A. Virmani, G2 dualities in D = 5 supergravity and black strings, Class. Quant. Grav. 26 (2009) 125016 [arXiv:0903.1645] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    A.A. Pomeransky, Complete integrability of higher-dimensional Einstein equations with additional symmetry and rotating black holes, Phys. Rev. D 73 (2006) 044004 [hep-th/0507250] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    R. Emparan, Rotating circular strings and infinite non-uniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007) 050 [hep-th/0701035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    S.S. Yazadjiev, Black Saturn with dipole ring, Phys. Rev. D 76 (2007) 064011 [arXiv:0705.1840] [SPIRES].ADSGoogle Scholar
  21. [21]
    J. Evslin and C. Krishnan, The black di-ring: an inverse scattering construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [hep-th/0701043] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S.S. Yazadjiev, 5D Einstein-Maxwell solitons and concentric rotating dipole black rings, Phys. Rev. D 78 (2008) 064032 [arXiv:0805.1600] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S.S. Yazadjiev and P.G. Nedkova, Magnetized configurations with black holes and Kaluza-Klein bubbles: Smarr-like relations and first law, Phys. Rev. D 80 (2009) 024005 [arXiv:0904.3605] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    R. Emparan and H.S. Reall, Generalized Weyl solutions, Phys. Rev. D 65 (2002) 084025 [hep-th/0110258] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [SPIRES].
  28. [28]
    J. Evslin, Geometric engineering 5D black holes with rod diagrams, JHEP 09 (2008) 004 [arXiv:0806.3389] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    S.S. Yazadjiev and P.G. Nedkova, Sequences of dipole black rings and Kaluza-Klein bubbles, arXiv:0910.0938 [SPIRES].
  30. [30]
    H.K. Kunduri and J. Lucietti, Static near-horizon geometries in five dimensions, Class. Quant. Grav. 26 (2009) 245010 [arXiv:0907.0410] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.The Niels Bohr InstituteCopenhagen ØDenmark
  2. 2.NORDITAStockholmSweden

Personalised recommendations