Advertisement

Strong double higgs production at the LHC

  • Roberto Contino
  • Christophe GrojeanEmail author
  • Mauro Moretti
  • Fulvio Piccinini
  • Riccardo Rattazzi
Open Access
Article

Abstract

The hierarchy problem and the electroweak data, together, provide a plausible motivation for considering a light Higgs emerging as a pseudo-Goldstone boson from a strongly-coupled sector. In that scenario, the rates for Higgs production and decay differ significantly from those in the Standard Model. However, one genuine strong coupling signature is the growth with energy of the scattering amplitudes among the Goldstone bosons, the longitudinally polarized vector bosons as well as the Higgs boson itself. The rate for double Higgs production in vector boson fusion is thus enhanced with respect to its negligible rate in the SM. We study that reaction in pp collisions, where the production of two Higgs bosons at high p T is associated with the emission of two forward jets. We concentrate on the decay mode hhWW (*) WW (*) and study the semi-leptonic decay chains of the W’s with 2, 3 or 4 leptons in the final states. While the 3 lepton final states are the most relevant and can lead to a 3σ signal significance with 300 fb−1 collected at a 14TeV LHC, the two same-sign lepton final states provide complementary information. We also comment on the prospects for improving the detectability of double Higgs production at the foreseen LHC energy and luminosity upgrades.

Keywords

Higgs Physics Beyond Standard Model Technicolor and Composite Models 

References

  1. [1]
    D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [SPIRES].ADSGoogle Scholar
  2. [2]
    C.H. Llewellyn Smith, High-energy behavior and gauge symmetry, Phys. Lett. B 46 (1973) 233 [SPIRES].ADSGoogle Scholar
  3. [3]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [SPIRES].ADSGoogle Scholar
  5. [5]
    B.W. Lee, C. Quigg and H.B. Thacker, The strength of weak interactions at very high-energies and the higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak interactions at very high-energies: the role of the higgs boson mass, Phys. Rev. D 16 (1977) 1519 [SPIRES].ADSGoogle Scholar
  7. [7]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].ADSGoogle Scholar
  8. [8]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].ADSGoogle Scholar
  9. [9]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  10. [10]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].ADSGoogle Scholar
  12. [12]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  13. [13]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].ADSGoogle Scholar
  14. [14]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].ADSGoogle Scholar
  15. [15]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  18. [18]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [SPIRES].ADSGoogle Scholar
  20. [20]
    W.D. Goldberger, B. Grinstein and W. Skiba, Light scalar at LHC: the Higgs or the dilaton?, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W's and Z's, Nucl. Phys. B 261 (1985) 379 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, arXiv:0907.5413 [SPIRES].
  23. [23]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher-dimensional metrics and curvature-Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  25. [25]
    M.S. Chanowitz, M. Golden and H. Georgi, Universal scattering theorems for strongly interacting W's and Z's, Phys. Rev. Lett. 57 (1986) 2344 [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    M.S. Chanowitz, M. Golden and H. Georgi, Low-energy theorems for strongly interacting W's And Z's, Phys. Rev. D 36 (1987) 1490 [SPIRES].ADSGoogle Scholar
  27. [27]
    R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [SPIRES].ADSGoogle Scholar
  28. [28]
    S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    M.S. Chanowitz and M.K. Gaillard, Multiple production of W and Z as a signal of new strong interactions, Phys. Lett. B 142 (1984) 85 [SPIRES].ADSGoogle Scholar
  30. [30]
    G.L. Kane, W.W. Repko and W.B. Rolnick, The effective W ±, Z 0 approximation for high-energy collisions, Phys. Lett. B 148 (1984) 367 [SPIRES].ADSGoogle Scholar
  31. [31]
    E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Isolating vector boson scattering at the LHC: Gauge cancellations and the equivalent vector boson approximation vs complete calculations, Phys. Rev. D 74 (2006) 073010 [hep-ph/0608019] [SPIRES].ADSGoogle Scholar
  32. [32]
    Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys. B 296 (1988) 253 [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].ADSGoogle Scholar
  34. [34]
    J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].ADSGoogle Scholar
  35. [35]
    A. Ballestrero, G. Bevilacqua, D.B. Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP 11 (2009) 126 [arXiv:0909.3838] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    A. Ballestrero, G. Bevilacqua and E. Maina, A complete parton level analysis of boson-boson scattering and electroweak symmetry breaking in lv+ four jets production at the LHC, JHEP 05 (2009) 015 [arXiv:0812.5084] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    N.Amapane et al., Study of VV-scattering processes as a probe of electroweak symmetry breaking, CMS note CERN-CMS-NOTE-2007-005.Google Scholar
  38. [38]
    E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Boson fusion and Higgs production at the LHC in six fermion final states with one charged lepton pair, Phys. Rev. D 75 (2007) 113006 [hep-ph/0603167] [SPIRES].ADSGoogle Scholar
  39. [39]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].ADSGoogle Scholar
  40. [40]
    T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].CrossRefGoogle Scholar
  41. [41]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Gluon-fusion contributions to H + 2 jet production, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    Y.L. Dokshitzer, S.I. Troian and V.A. Khoze, Collective QCD effects in the structure of final multi-hadron states. (In Russian), in proceedings of the 6th International Conference on Physics in Collisions, M. Derrick eds. (1986), World Scientific, Singapore (1987) pg. 365 Sov. J. Nucl. Phys. 46 (1987) 712 [Yad. Fiz. 46 (1987) 1220] [SPIRES].
  49. [49]
    Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett. B 274 (1992) 116 [SPIRES].ADSGoogle Scholar
  50. [50]
    J.D. Bjorken, A Full acceptance detector for SSC physics at low and intermediate mass scales: An Expression of interest to the SSC, Int. J. Mod. Phys. A 7 (1992) 4189 [SPIRES].ADSGoogle Scholar
  51. [51]
    J.D. Bjorken, Rapidity gaps and jets as a new physics signature in very high-energy hadron hadron collisions, Phys. Rev. D 47 (1993) 101 [SPIRES].ADSGoogle Scholar
  52. [52]
    J.D. Bjorken, Two gauge boson physics at very high-energies, SLAC-PUB-5823 (1992) [SPIRES].
  53. [53]
    R.S. Fletcher and T. Stelzer, Rapidity gap signals in Higgs production at the SSC, Phys. Rev. D 48 (1993) 5162 [hep-ph/9306253] [SPIRES].ADSGoogle Scholar
  54. [54]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    F.E. Paige and S.D. Protopopescu, ISAJET 5.30: a Monte Carlo event generator for pp and ppbar interactions, in Physics of the SSC, R. Donaldson and J. Marx eds., Snowmass, Colorado (1986) pg. 320.Google Scholar
  56. [56]
    CMS collaboration, G.L. Bayatian et al., CMS physics: Technical design report, Volume I: Detector performance and software, February (2006), CERN-LHCC-2006-001 [SPIRES].
  57. [57]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  58. [58]
    Z. Sullivan and E.L. Berger, The missing heavy flavor backgrounds to Higgs boson production, Phys. Rev. D 74 (2006) 033008 [hep-ph/0606271] [SPIRES].ADSGoogle Scholar
  59. [59]
    Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: Standard model sources and beyond, Phys. Rev. D 78 (2008) 034030 [arXiv:0805.3720] [SPIRES].ADSGoogle Scholar
  60. [60]
    A. Birkedal, K. Matchev and M. Perelstein, Collider phenomenology of the Higgsless models, Phys. Rev. Lett. 94 (2005) 191803 [hep-ph/0412278] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    H.-J. He et al., LHC signatures of new gauge bosons in minimal Higgsless model, Phys. Rev. D 78 (2008) 031701 [arXiv:0708.2588] [SPIRES].ADSGoogle Scholar
  62. [62]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [SPIRES].ADSGoogle Scholar
  63. [63]
    E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Drell-Yan production at the LHC in a four site Higgsless model, Phys. Rev. D 79 (2009) 055020 [arXiv:0807.5051] [SPIRES].ADSGoogle Scholar
  64. [64]
    E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, The four site Higgsless model at the LHC, Nuovo Cim. 123B (2008) 809 [arXiv:0807.2951] [SPIRES].ADSGoogle Scholar
  65. [65]
    C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN large hadron collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES].ADSGoogle Scholar
  66. [66]
    R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [SPIRES].ADSGoogle Scholar
  67. [67]
    A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].ADSGoogle Scholar
  68. [68]
    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [SPIRES].ADSGoogle Scholar
  69. [69]
    O. Catà, G. Isidori and J.F. Kamenik, Drell-Yan production of heavy vectors in Higgsless models, Nucl. Phys. B 822 (2009) 230 [arXiv:0905.0490] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB higgs models, arXiv:0911.0059 [SPIRES].
  71. [71]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].CrossRefGoogle Scholar
  74. [74]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, arXiv:0912.4731 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Roberto Contino
    • 1
    • 2
  • Christophe Grojean
    • 2
    • 3
    Email author
  • Mauro Moretti
    • 4
  • Fulvio Piccinini
    • 5
  • Riccardo Rattazzi
    • 6
  1. 1.Dipartimento di Fisica, Università di Roma “La Sapienza” and INFN, Sezione di RomaRomaItaly
  2. 2.CERN, Physics Department, Theory UnitGenevaSwitzerland
  3. 3.Institut de Physique ThéoriqueCEA SaclayFrance
  4. 4.Dipartimento di FisicaUniversità di Ferrara and INFN, Sezione di FerraraFerraraItaly
  5. 5.INFN, Sezione di PaviaPaviaItaly
  6. 6.Institut de Théorie des Phénomènes Physiques, EPFLLausanneSwitzerland

Personalised recommendations