Advertisement

Stable non-supersymmetric throats in string theory

  • Shamit Kachru
  • Dušan SimićEmail author
  • Sandip P. Trivedi
Open Access
Article

Abstract

We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.

Keywords

Technicolor and Composite Models Gauge-gravity correspondence Compactification and String Models Flux compactifications 

References

  1. [1]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefMathSciNetADSzbMATHGoogle Scholar
  2. [2]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M.J. Strassler, Non-supersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [SPIRES].
  6. [6]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSzbMATHGoogle Scholar
  7. [7]
    S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [SPIRES].CrossRefMathSciNetADSzbMATHGoogle Scholar
  8. [8]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    G.T. Horowitz, J. Orgera and J. Polchinski, Nonperturbative Instability of AdS 5 × S 5/Z k, Phys. Rev. D 77 (2008) 024004 [arXiv:0709.4262] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Adams and E. Silverstein, Closed string tachyons, AdS/CFT and large-N QCD, Phys. Rev. D 64 (2001) 086001 [hep-th/0103220] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative search for fixed lines in large-N gauge theories, JHEP 08 (2005) 011 [hep-th/0505099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Dymarsky, I.R. Klebanov and R. Roiban, Perturbative gauge theory and closed string tachyons, JHEP 11 (2005) 038 [hep-th/0509132] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
  16. [16]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, Spectrum of type IIB supergravity on AdS 5 × T 11 : predictions on N = 1 SCFT’s, Phys. Rev. D 61 (2000) 066001 [hep-th/9905226] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    S. Franco, A. Hanany and A.M. Uranga, Multi-flux warped throats and cascading gauge theories, JHEP 09 (2005) 028 [hep-th/0502113] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [SPIRES].MathSciNetzbMATHGoogle Scholar
  20. [20]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    M. Audin, A. Cannas da Silva and E. Lerman, Symplectic geometry of integrable hamiltonian systems, Birkhäuser, Gaermany (2003).zbMATHGoogle Scholar
  23. [23]
    A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) 7345 [hep-th/9702165] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    O. Aharony, Y.E. Antebi and M. Berkooz, Open string moduli in KKLT compactifications, Phys. Rev. D 72 (2005) 106009 [hep-th/0508080] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a non-supersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    O. DeWolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    B. Hassanain, J. March-Russell and M. Schvellinger, Warped deformed throats have faster (electroweak) phase transitions, JHEP 10 (2007) 089 [arXiv:0708.2060] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    J.F.G. Cascales, M.P. Garcia del Moral, F. Quevedo and A.M. Uranga, Realistic D-brane models on warped throats: fluxes, hierarchies and moduli stabilization, JHEP 02 (2004) 031 [hep-th/0312051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Shamit Kachru
    • 1
    • 2
    • 3
  • Dušan Simić
    • 1
    • 2
    • 3
    Email author
  • Sandip P. Trivedi
    • 4
    • 1
    • 2
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.SLAC, Stanford UniversityStanfordU.S.A.
  3. 3.Kavli Institute for Theoretical PhysicsSanta BarbaraU.S.A.
  4. 4.Tata Institute for Fundamental ResearchMumbaiIndia

Personalised recommendations