Composite Higgs search at the LHC

Open Access
Article

Abstract

The Higgs boson production cross-sections and decay rates depend, within the Standard Model (SM), on a single unknown parameter, the Higgs mass. In composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone boson from a strongly-interacting sector, additional parameters control the Higgs properties which then deviate from the SM ones. These deviations modify the LEP and Tevatron exclusion bounds and significantly affect the searches for the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced, which results in deterioration of the Higgs searches but the deviations of the Higgs couplings can also allow for an enhancement of the gluon-fusion production channel, leading to higher statistical significances. The search in the Hγγ channel can also be substantially improved due to an enhancement of the branching fraction for the decay of the Higgs boson into a pair of photons.

Keywords

Higgs Physics Beyond Standard Model Hadronic Colliders 

References

  1. [1]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, arXiv:1002.1011 [SPIRES].
  3. [3]
    W.D. Goldberger, B. Grinstein and W. Skiba, Light scalar at LHC: the Higgs or the dilaton?, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [SPIRES].ADSGoogle Scholar
  5. [5]
    L. Vecchi, Phenomenology of a light scalar: the dilaton, arXiv:1002.1721 [SPIRES].
  6. [6]
    D.B. Kaplan and H. Georgi, S(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].ADSGoogle Scholar
  7. [7]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [SPIRES].ADSGoogle Scholar
  9. [9]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [SPIRES].ADSGoogle Scholar
  10. [10]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [SPIRES].ADSGoogle Scholar
  11. [11]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [SPIRES].ADSGoogle Scholar
  12. [12]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [SPIRES].ADSGoogle Scholar
  14. [14]
    A.R. Zerwekh, Associate Higgs and gauge boson production at hadron colliders in a model with vector resonances, Eur. Phys. J. C 46 (2006) 791 [hep-ph/0512261] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    A. Djouadi and G. Moreau, Higgs production at the LHC in warped extra-dimensional models, Phys. Lett. B 660 (2008) 67 [arXiv:0707.3800] [SPIRES].ADSGoogle Scholar
  16. [16]
    N. Maru and N. Okada, Gauge-Higgs unification at LHC, Phys. Rev. D 77 (2008) 055010 [arXiv:0711.2589] [SPIRES].ADSGoogle Scholar
  17. [17]
    N. Maru, Finite gluon fusion amplitude in the gauge-Higgs unification, Mod. Phys. Lett. A 23 (2008) 2737 [arXiv:0803.0380] [SPIRES].ADSGoogle Scholar
  18. [18]
    G. Bhattacharyya and T.S. Ray, Probing warped extra dimension via ggh and hγγ at LHC, Phys. Lett. B 675 (2009) 222 [arXiv:0902.1893] [SPIRES].ADSGoogle Scholar
  19. [19]
    N. Maru, T. Nomura, J. Sato and M. Yamanaka, Higgs production via gluon fusion in a six dimensional universal extra dimension model on S 2/Z 2, Eur. Phys. J. C 66 (2010) 283 [arXiv:0905.4554] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A.R. Zerwekh, Two composite Higgs doublets: is it the low energy limit of a natural strong electroweak symmetry breaking sector?, Mod. Phys. Lett. A 25 (2010) 423 [arXiv:0907.4690] [SPIRES].ADSGoogle Scholar
  21. [21]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    F. Sannino, Conformal dynamics for TeV physics and cosmology, arXiv:0911.0931 [SPIRES].
  23. [23]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher-dimensional metrics and curvature-Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].ADSGoogle Scholar
  25. [25]
    C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    D. Stancato and J. Terning, The unhiggs, JHEP 11 (2009) 101 [arXiv:0807.3961] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    C. Grojean, New theories for the Fermi scale, arXiv:0910.4976 [SPIRES].
  30. [30]
    D. E. Morrissey, T. Plehn and T.M.P. Tait, New physics at the LHC, arXiv:0912.3259 [SPIRES].
  31. [31]
    A.V. Manohar and M.B. Wise, Modifications to the properties of a light Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [SPIRES].ADSGoogle Scholar
  32. [32]
    A. Pierce, J. Thaler and L.-T. Wang, Disentangling dimension six operators through di-Higgs boson production, JHEP 05 (2007) 070 [hep-ph/0609049] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgs to gamma gamma beyond the standard model, JHEP 06 (2009) 054 [arXiv:0901.0927] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [SPIRES].ADSGoogle Scholar
  38. [38]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, arXiv:0907.5413 [SPIRES].
  39. [39]
    M. Spira and J.D. Wells, Higgs bosons strongly coupled to the top quark, Nucl. Phys. B 523 (1998) 3 [hep-ph/9711410] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].MATHADSCrossRefGoogle Scholar
  41. [41]
    A. Djouadi, J. Kalinowski, M. Muhlleitner and M. Spira, An update of the program HDECAY, in J.M. Butterworth et al., The tools and Monte Carlo working group summary report from the Les Houches 2009 workshop on TeV colliders, 1003.1643 [SPIRES].
  42. [42]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
  44. [44]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  45. [45]
    ALEPH DELPHI, L3 and OPAL collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    LEP Higgs working group, Searches for Higgs bosons decaying into photons: combined results from the LEP experiments, LHWG Note 2002-02.Google Scholar
  47. [47]
    T. Aaltonen et al., Search for a fermiophobic Higgs boson decaying into diphotons in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. Lett. 103 (2009) 061803 [arXiv:0905.0413] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    CDF and D0 collaboration, The TEVNPH working group, Combined CDF and D0 upper limits on MSSM Higgs boson production in ττ final states with up to 2:2 fb −1 of data, FERMILAB-PUB-09-394-E [CDF-NOTE-9888] [D0-NOTE-5980-CONF].Google Scholar
  50. [50]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].ADSGoogle Scholar
  51. [51]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].ADSGoogle Scholar
  52. [52]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [SPIRES].ADSGoogle Scholar
  53. [53]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].MATHADSCrossRefGoogle Scholar
  54. [54]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [SPIRES].ADSGoogle Scholar
  57. [57]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    R.P. Kauffman and W. Schaffer, QCD corrections to production of Higgs pseudoscalars, Phys. Rev. D 49 (1994) 551 [hep-ph/9305279] [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Dawson and R. Kauffman, QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit, Phys. Rev. D 49 (1994) 2298 [hep-ph/9310281] [SPIRES].ADSGoogle Scholar
  62. [62]
    M. Krämer, 1, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [SPIRES].ADSGoogle Scholar
  68. [68]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [SPIRES].ADSGoogle Scholar
  70. [70]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [SPIRES].CrossRefGoogle Scholar
  71. [71]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    A. Ghinculov and J.J. van der Bij, The Higgs resonance shape in gluon fusion: heavy Higgs effects, Nucl. Phys. B 482 (1996) 59 [hep-ph/9511414] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [SPIRES].ADSGoogle Scholar
  75. [75]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop electroweak corrections to Higgs production in proton proton collisions, hep-ph/0610033 [SPIRES].
  76. [76]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES].ADSGoogle Scholar
  77. [77]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].ADSCrossRefGoogle Scholar
  78. [78]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [SPIRES].
  79. [79]
    R.N. Cahn and S. Dawson, Production of very massive Higgs bosons, Phys. Lett. B 136 (1984) 196 [Erratum ibid. B 138 (1984) 464] [SPIRES].ADSGoogle Scholar
  80. [80]
    K.-i. Hikasa, Heavy Higgs production in e + e and e e collisions, Phys. Lett. B 164 (1985) 385 [Erratum ibid. B 195 (1987) 623] [SPIRES].ADSGoogle Scholar
  81. [81]
    G. Altarelli, B. Mele and F. Pitolli, Heavy Higgs production at future colliders, Nucl. Phys. B 287 (1987) 205 [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in pp collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [SPIRES].ADSGoogle Scholar
  84. [84]
    E.L. Berger and J.M. Campbell, Higgs boson production in weak boson fusion at next-to-leading order, Phys. Rev. D 70 (2004) 073011 [hep-ph/0403194] [SPIRES].ADSGoogle Scholar
  85. [85]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  86. [86]
  87. [87]
    S.L. Glashow, D.V. Nanopoulos and A. Yildiz, Associated production of higgs bosons and Z particles, Phys. Rev. D 18 (1978) 1724 [SPIRES].ADSGoogle Scholar
  88. [88]
    Z. Kunszt, Z. Trócsányi and W.J. Stirling, Clear signal of intermediate mass Higgs boson production at LHC and SSC, Phys. Lett. B 271 (1991) 247 [SPIRES].ADSGoogle Scholar
  89. [89]
    T. Han and S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [SPIRES].ADSGoogle Scholar
  90. [90]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [SPIRES].ADSGoogle Scholar
  91. [91]
    M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [SPIRES].ADSGoogle Scholar
  92. [92]
    R. Raitio and W.W. Wada, Higgs boson production at large transverse momentum in QCD, Phys. Rev. D 19 (1979) 941 [SPIRES].ADSGoogle Scholar
  93. [93]
    J.N. Ng and P. Zakarauskas, A QCD parton calculation of conjoined production of Higgs bosons and heavy flavors in \( p\bar p \) collision, Phys. Rev. D 29 (1984) 876 [SPIRES].ADSGoogle Scholar
  94. [94]
    Z. Kunszt, Associated production of heavy Higgs boson with top quarks, Nucl. Phys. B 247 (1984) 339 [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    W.J. Marciano and F.E. Paige, Associated production of Higgs bosons with \( t\bar t \) pairs, Phys. Rev. Lett. 66 (1991) 2433 [SPIRES].ADSCrossRefGoogle Scholar
  96. [96]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [SPIRES].ADSCrossRefGoogle Scholar
  97. [97]
    W. Beenakker et al., NLO QCD corrections to \( t\bar tH \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].ADSGoogle Scholar
  99. [99]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  100. [100]
    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  101. [101]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [SPIRES].ADSCrossRefGoogle Scholar
  102. [102]
    A. Belyaev, R. Guedes, S. Moretti and R. Santos, Higgs boson phenomenology in τ + τ final states at the LHC, arXiv:0912.2620 [SPIRES].
  103. [103]
    CMS collaboration, M. Pieri et al., Inclusive search for the Higgs boson in the Hγγ channel, CERN-CMS-NOTE-2006-112 [SPIRES].
  104. [104]
    E. Accomando et al., Workshop on CP studies and non-standard Higgs physics, hep-ph/0608079 [SPIRES].
  105. [105]
    V.D. Barger, K.-m. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [SPIRES].ADSGoogle Scholar
  106. [106]
    S.Y. Choi, D.J. Miller, 2, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [SPIRES].ADSGoogle Scholar
  107. [107]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZl 1+ l 1 l 2+ l 2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [SPIRES].ADSGoogle Scholar
  108. [108]
    R.M. Godbole, D.J. Miller, 2 and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [SPIRES].ADSCrossRefGoogle Scholar
  109. [109]
    CMS collaboration, S. Baffioni et al., Discovery potential for the SM Higgs boson in the HZZ (*)e + e e + e decay channel, J. Phys. G 34 (2007) N23 [SPIRES].Google Scholar
  110. [110]
    CMS collaboration, S. Abdullin et al., Search strategy for the standard model Higgs boson in the HZZ (*) → 4μ decay channel using M(4μ)-dependent cuts, Acta Phys. Polon. B 38 (2007) 731 [SPIRES].ADSGoogle Scholar
  111. [111]
    CMS collaboration, D. Futyan, D. Fortin and D. Giordano, Search for the standard model Higgs boson in the two-electron and two-muon final state with the CMS detector, J. Phys. G 34 (2007) N315 [SPIRES].ADSGoogle Scholar
  112. [112]
    CMS collaboration, Search strategy for the Higgs boson in the ZZ (*) decay channel with the CMS experiment, CMS-PAS-HIG-08-003.Google Scholar
  113. [113]
    M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155 GeV–180 GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [SPIRES].ADSGoogle Scholar
  114. [114]
    CMS collaboration, G. Davatz, M. Dittmar and A.S. Giolo-Nicollerat, Standard model Higgs discovery potential of CMS in the HWWlνlν channel, J. Phys. G 33 (2007) N85 [SPIRES].ADSGoogle Scholar
  115. [115]
    CMS collaboration, Search strategy for a standard model Higgs boson decaying to two W bosons in the fully leptonic final state, CMS-PAS-HIG-08-006.Google Scholar
  116. [116]
    CMS collaboration, H.F. Pi, P. Avery, J. Rohlf, C. Tully and S. Kunori, Search for standard model Higgs boson via vector boson fusion in the HW + W l ± νjj with 120 < m H < 250 GeV/c 2, CMS-NOTE-2006-092.Google Scholar
  117. [117]
    D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for Htau tau in weak boson fusion at the LHC, Phys. Rev. D 59 (1999) 014037 [hep-ph/9808468] [SPIRES].ADSGoogle Scholar
  118. [118]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, A method for identifying Hττe ± μ m p missing p T at the CERN LHC, Phys. Rev. D 61 (2000) 093005 [hep-ph/9911385] [SPIRES].ADSGoogle Scholar
  119. [119]
    D. Cavalli et al., The Higgs working group: summary report, hep-ph/0203056 [SPIRES].
  120. [120]
    CMS collaborationc, C. Foudas, A. Nikitenko and M. Takahashi, Observation of the standard model Higgs boson via Hττlepton + jet channel, CMS-NOTE-2006-088.Google Scholar
  121. [121]
    R.D. Cousins, J.T. Linnemann and J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nucl. Instrum. Meth. A 595 (2008) 480 [SPIRES].Google Scholar
  122. [122]
    T. Dorigo, private communication.Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • J. R. Espinosa
    • 1
    • 2
  • C. Grojean
    • 2
    • 3
  • M. Mühlleitner
    • 4
  1. 1.ICREA, Instituciò Catalana de Recerca i Estudis AvançatsIFAE, Universitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.CERN, Physics Department, Theory UnitGeneva 23Switzerland
  3. 3.Institut de Physique Théorique, CEA SaclayGif-sur-YvetteFrance
  4. 4.Institut für Theoretische PhysikKarlsruhe Institut of TechnologyKarlsruheGermany

Personalised recommendations