IIA/IIB supergravity and ten-forms

  • E. A. Bergshoeff
  • J. Hartong
  • P. S. Howe
  • T. Ortín
  • F. Riccioni
Open Access
Article

Abstract

We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as “top-forms”, require a careful analysis since in this case, as we will show, closure of the supersymmetry algebra at the linear level does not imply closure at the non-linear level. Consequently, some of the (IIA and IIB) ten-form potentials introduced in earlier work of some of us are discarded. At the same time we show that new ten-form potentials, consistent with the full non-linear supersymmetry algebra can be introduced. We give a superspace explanation of our work. All of our results are precisely in line with the predictions of the E 11 algebra.

Keywords

p-branes Extended Supersymmetry Superspaces Gauge Symmetry 

References

  1. [1]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of Type II 7-branes and 8-branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    L.J. Romans, Massive N = 2a Supergravity in Ten-Dimensions, Phys. Lett. B 169 (1986) 374 [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    F. Giani and M. Pernici, N = 2 Supergravity In Ten-Dimensions, Phys. Rev. D 30 (1984) 325 [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    I.C.G. Campbell and P.C. West, N = 2 D = 10 Nonchiral Supergravity and Its Spontaneous Compactification, Nucl. Phys. B 243 (1984) 112 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    M. Huq and M.A. Namazie, Kaluza-Klein Supergravity In Ten-Dimensions, Class. Quant. Grav. 2 (1985) 293 [Erratum-ibid. 2 (1985) 597] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J.H. Schwarz and P.C. West, Symmetries and Transformations of Chiral N = 2 D = 10 Supergravity, Phys. Lett. B 126 (1983) 301 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P.S. Howe and P.C. West, The Complete N = 2, D = 10 Supergravity, Nucl. Phys. B 238 (1984) 181 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New Formulations of D = 10 Supersymmetry and D8-O8 Domain Walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [SPIRES].MATHCrossRefADSGoogle Scholar
  10. [10]
    E. Bergshoeff, M. de Roo, B. Janssen and T. Ortín, The super D9-brane and its truncations, Nucl. Phys. B 550 (1999) 289 [hep-th/9901055] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB Supergravity Revisited, JHEP 08 (2005) 098 [hep-th/0506013] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    E. Bergshoeff, P.S. Howe, S. Kerstan and L. Wulff, Kappa-symmetric SL(2,R) covariant D-brane actions, JHEP 10 (2007) 050 [arXiv:0708.2722] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Kleinschmidt, I. Schnakenburg and P.C. West, Very-extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    I. Schnakenburg and P.C. West, Kac-Moody symmetries of IIB supergravity, Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    P.C. West, E 11 , ten forms and supergravity, JHEP 03 (2006) 072 [hep-th/0511153] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    F. Riccioni and P. West, Local E 11, JHEP 04 (2009) 051 [arXiv:0902.4678] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz-invariant actions and duality, JHEP 07 (1998) 017 [hep-th/9806140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [SPIRES].MATHCrossRefADSGoogle Scholar
  20. [20]
    J.L. Carr, S.J. Gates Jr. and R.N. Oerter, D = 10, N = 2a Supergravity in Superspace, Phys. Lett. B 189 (1987) 68 [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson, P. Sundell and A. Westerberg, The Dirichlet super-p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys. B 490 (1997) 179 [hep-th/9611159] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    E. Bergshoeff, P.M. Cowdall and P.K. Townsend, Massive IIA supergravity from the topologically massive D-2-brane, Phys. Lett. B 410 (1997) 13 [hep-th/9706094] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    P.S. Howe and E. Sezgin, The supermembrane revisited, Class. Quant. Grav. 22 (2005) 2167 [hep-th/0412245] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • E. A. Bergshoeff
    • 1
  • J. Hartong
    • 2
  • P. S. Howe
    • 3
  • T. Ortín
    • 4
  • F. Riccioni
    • 3
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  3. 3.Department of MathematicsKing’s College LondonStrand LondonU.K.
  4. 4.Instituto de Física Teórica, UAM/CSICFacultad de Ciencias C-XVIMadridSpain

Personalised recommendations