Free particles from Brauer algebras in complex matrix models

Article

Abstract

The gauge invariant degrees of freedom of matrix models based on an N × N complex matrix, with U(N) gauge symmetry, contain hidden free particle structures. These are exhibited using triangular matrix variables via the Schur decomposition. The Brauer algebra basis for complex matrix models developed earlier is useful in projecting to a sector which matches the state counting of N free fermions on a circle. The Brauer algebra projection is characterized by the vanishing of a scale invariant laplacian constructed from the complex matrix. The special case of N = 2 is studied in detail: the ring of gauge invariant functions as well as a ring of scale and gauge invariant differential operators are characterized completely. The orthonormal basis of wavefunctions in this special case is completely characterized by a set of five commuting Hamiltonians, which display free particle structures. Applications to the reduced matrix quantum mechanics coming from radial quantization in \( \mathcal{N} = 4 \) SYM are described. We propose that the string dual of the complex matrix harmonic oscillator quantum mechanics has an interpretation in terms of strings and branes in 2 + 1 dimensions.

Keywords

Matrix Models AdS-CFT Correspondence 

References

  1. [1]
    J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965) 440.MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [SPIRES].MathSciNetGoogle Scholar
  3. [3]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A. Jevicki and S. Ramgoolam, Non-commutative gravity from the AdS/CFT correspondence, JHEP 04 (1999) 032 [hep-th/9902059] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    R.d.M. Koch and J. Murugan, Emergent spacetime, arXiv:0911.4817 [SPIRES].
  8. [8]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    B.U. Eden, P.S. Howe, A. Pickering, E. Sokatchev and P.C. West, Four-point functions in N = 2 superconformal field theories, Nucl. Phys. B 581 (2000) 523 [hep-th/0001138] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    B.U. Eden, P.S. Howe, E. Sokatchev and P.C. West, Extremal and next-to-extremal n-point correlators in four-dimensional SCFT, Phys. Lett. B 494 (2000) 141 [hep-th/0004102] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and Brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J.R. Stembridge, Rational tableaux and the tensor algebra of gl(n), J. Combi. Theory A 46 (1987) 79.CrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989) 57.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee and J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994) 529.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    T. Halverson, Characters of the centralizer algebras of mixed tensor representations of Gl(r, C) and the quantum group U q(gl(r, C)), Pacific J. Math 174 (1996) 359.MATHMathSciNetGoogle Scholar
  17. [17]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  18. [18]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    I.K. Kostov, M. Staudacher and T. Wynter, Complex matrix models and statistics of branched coverings of 2D surfaces, Commun. Math. Phys. 191 (1998) 283 [hep-th/9703189] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  20. [20]
    C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A new double-scaling limit of N = 4 super Yang-Mills theory and PP-wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    G. Akemann and G. Vernizzi, Characteristic polynomials of complex random matrix models, Nucl. Phys. B 660 (2003) 532 [hep-th/0212051] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    A. Alexandrov, A. Mironov and A. Morozov, BGWM as second constituent of complex matrix model, JHEP 12 (2009) 053 [arXiv:0906.3305] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    A. Cox, M. De Visscher, S. Doty and P. Martin, On the blocks of the walled Brauer algebra, J. Algebra 320 (2007) 169 [arXiv:0709.0851].CrossRefGoogle Scholar
  24. [24]
    M. Masuku and J.P. Rodrigues, Laplacians in polar matrix coordinates and radial fermionization in higher dimensions, arXiv:0911.2846 [SPIRES].
  25. [25]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    I.R. Klebanov, String theory in two-dimensions, hep-th/9108019 [SPIRES].
  27. [27]
    P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [SPIRES].
  28. [28]
    S. Alexandrov, Matrix quantum mechanics and two-dimensional string theory in non-trivial backgrounds, hep-th/0311273 [SPIRES].
  29. [29]
    M.R. Douglas, Conformal field theory techniques for large-N group theory, hep-th/9303159 [SPIRES].
  30. [30]
    M.R. Douglas, Conformal field theory techniques in large-N Yang-Mills theory, hep-th/9311130 [SPIRES].
  31. [31]
    L.-L. Chau and Y. Yu, Unitary polynomials in normal matrix models and Laughlin’s wave functions for the fractional quantum Hall effect, UCDPHYS-PUB-91-13 [SPIRES].
  32. [32]
    L.-L. Chau and O. Zaboronsky, On the structure of correlation functions in the normal matrix model, Commun. Math. Phys. 196 (1998) 203 [hep-th/9711091] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    I.R. Klebanov, J.M. Maldacena and N. Seiberg, Unitary and complex matrix models as 1D type 0 strings, Commun. Math. Phys. 252 (2004) 275 [hep-th/0309168] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    C. Itzykson and J.B. Zuber, The planar approximation. 2, J. Math. Phys. 21 (1980) 411 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  35. [35]
    J.P. Rodrigues, Large-N spectrum of two matrices in a harmonic potential and BMN energies, JHEP 12 (2005) 043 [hep-th/0510244] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J.P. Rodrigues and A. Zaidi, Non supersymmetric strong coupling background from the large-N quantum mechanics of two matrices coupled via a Yang-Mills interaction, arXiv:0807.4376 [SPIRES].
  37. [37]
    C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, U.S.A (2000), see pag. 508.MATHGoogle Scholar
  38. [38]
    M.L. Mehta, Random matrices, 3rd edition, Academic Press, U.S.A. (2004).MATHGoogle Scholar
  39. [39]
    Y. Takayama and A. Tsuchiya, Complex matrix model and fermion phase space for bubbling AdS geometries, JHEP 10 (2005) 004 [hep-th/0507070] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    L. Castellani, On G/H geometry and its use in M-theory compactifications, Annals Phys. 287 (2001) 1 [hep-th/9912277] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  41. [41]
    G. Olshanski, An introduction to harmonic analysis on the infinite symmetric group, math/0311369.
  42. [42]
    A.A. Kirillov, Elements of the theory of representations, Springer, U.S.A. (1972).Google Scholar
  43. [43]
    T. Ortín, Gravity and Strings, Cambridge University Press, Cambridge U.K. (2007), pag. 603.Google Scholar
  44. [44]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    D.P. Zelobenko, Compact Lie groups and their representations, American Mathematical Society, U.S.A. (1973), see p. 156.MATHGoogle Scholar
  47. [47]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    F.A. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    R. Bhattacharyya, S. Collins and R.d.M. Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    S. Collins, Restricted Schur polynomials and finite N counting, Phys. Rev. D 79 (2009) 026002 [arXiv:0810.4217] [SPIRES].ADSGoogle Scholar
  53. [53]
    J.F. Willenbring, Stable Hilbert series of S(g)K for classical groups, math/0510649.
  54. [54]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    A. Ghodsi, A.E. Mosaffa, O. Saremi and M.M. Sheikh-Jabbari, LLL vs. LLM: half BPS sector of N = 4 SYM equals to quantum Hall system, Nucl. Phys. B 729 (2005) 467 [hep-th/0505129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998), see pag. 39.Google Scholar
  57. [57]
    T. Yoneya, Extended fermion representation of multi-charge 1/2-BPS operators in AdS/CFT: towards field theory of D-branes, JHEP 12 (2005) 028 [hep-th/0510114] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    V. Pasquier, A lecture on the Calogero-Sutherland models, hep-th/9405104 [SPIRES].
  59. [59]
    A. Agarwal and A.P. Polychronakos, BPS operators in N = 4 SYM: Calogero models and 2D fermions, JHEP 08 (2006) 034 [hep-th/0602049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  60. [60]
    A.P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A 39 (2006) 12793 [hep-th/0607033] [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    J. Huebschmann, G. Rudolph and M. Schmidt, A lattice gauge model for quantum mechanics on a stratified space, Commun. Math. Phys. 286 (2009) 459 [hep-th/0702017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  65. [65]
    J.A. Minahan, The SU(2) sector in AdS/CFT, Fortsch. Phys. 53 (2005) 828 [hep-th/0503143] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  66. [66]
    N. Itzhaki and J. McGreevy, The large-N harmonic oscillator as a string theory, Phys. Rev. D 71 (2005) 025003 [hep-th/0408180] [SPIRES].MathSciNetADSGoogle Scholar
  67. [67]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].MathSciNetADSGoogle Scholar
  68. [68]
    E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  69. [69]
    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Yusuke Kimura
    • 1
  • Sanjaye Ramgoolam
    • 1
  • David Turton
    • 1
  1. 1.Queen Mary University of London, Centre for Research in String Theory, Department of PhysicsLondonU.K.

Personalised recommendations